ترغب بنشر مسار تعليمي؟ اضغط هنا

Global trends in winds of M dwarf stars

55   0   0.0 ( 0 )
 نشر من قبل Amanda Mesquita
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

M dwarf stars are currently the main targets in searches for potentially habitable planets. However, their winds have been suggested to be harmful to planetary atmospheres. Here, in order to better understand the winds of M dwarfs and also infer their physical properties, we perform a one-dimensional magnetohydrodynamic parametric study of winds of M dwarfs that are heated by dissipation of Alfven waves. These waves are triggered by sub-surface convective motions and propagate along magnetic field lines. Here, we vary the magnetic field strength and density at the wind base (chromosphere), while keeping the same relative wave amplitude ($0.1 B_0$) and dissipation lenghtscale. We find that our winds very quickly reach isothermal temperatures with mass-loss rates proportional to base density square. We compare our results with Parker wind models and find that, in the high-beta regime, both models agree. However, in the low-beta regime, the Parker wind underestimates the terminal velocity by around one order of magnitude and mass-loss rate by several orders of magnitude. We also find that M dwarfs could have chromospheres extending to 18% to 180% of the stellar radius. We apply our model to the planet-hosting star GJ 436 and find, from X-ray observational constraints, $dot{M}<7.6times 10^{-15},M_{odot}~text{yr}^{-1}$. This is in agreement with values derived from the Lyman-alpha transit of GJ 436b, indicating that spectroscopic planetary transits could be used as a way to study stellar wind properties.



قيم البحث

اقرأ أيضاً

101 - Jiadong Li , Chao Liu , Bo Zhang 2020
M dwarf stars are the most common stars in the Galaxy, dominating the population of the Galaxy by numbers at faint magnitudes. Precise and accurate stellar parameters for M dwarfs are of crucial importance for many studies. However, the atmospheric p arameters of M dwarf stars are difficult to be determined. In this paper, we present a catalog of the spectroscopic stellar parameters ($T_{eff}$ and [M/H]) of $sim$ 300,000 M dwarf stars observed by both LAMOST and Gaia using Stellar Label Machine (SLAM). We train a SLAM model using LAMOST spectra with APOGEE Data Release 16 (DR16) labels with $2800 lt T_{eff} lt 4500$K and $-2 lt [M/H] lt 0.5$ dex. The SLAM $T_{eff}$ is in agreement to within $sim 50$K compared to the previous study determined by APOGEE observation, and SLAM [M/H] agree within 0.12 dex compared to the APOGEE observation. We also set up a SLAM model trained by BT-Settl atmospheric model, with random uncertainties (in cross-validation) to 60K and agree within $sim 90$K compared to previous study.
High resolution UV spectra of stellar H I Lyman-alpha lines from the Hubble Space Telescope (HST) provide observational constraints on the winds of coronal main sequence stars, thanks to an astrospheric absorption signature created by the interaction between the stellar winds and the interstellar medium. We report the results of a new HST survey of M dwarf stars, yielding six new detections of astrospheric absorption. We estimate mass-loss rates for these detections, and upper limits for nondetections. These new constraints allow us to characterize the nature of M dwarf winds and their dependence on coronal activity for the first time. For a clear majority of the M dwarfs, we find winds that are weaker or comparable in strength to that of the Sun, i.e. Mdot<=1 Mdot_sun. However, two of the M dwarfs have much stronger winds: YZ CMi (M4 Ve; Mdot=30 Mdot_sun) and GJ 15AB (M2 V+M3.5 V; Mdot=10 Mdot_sun). Even these winds are much weaker than expectations if the solar relation between flare energy and coronal mass ejection (CME) mass extended to M dwarfs. Thus, the solar flare/CME relation does not appear to apply to M dwarfs, with important ramifications for the habitability of exoplanets around M dwarfs. There is evidence for some increase in Mdot with coronal activity as quantified by X-ray flux, but with much scatter. One or more other factors must be involved in determining wind strength besides spectral type and coronal activity, with magnetic topology being one clear possibility.
Bow shocks can be formed around planets due to their interaction with the coronal medium of the host stars. The net velocity of the particles impacting on the planet determines the orientation of the shock. At the Earths orbit, the (mainly radial) so lar wind is primarily responsible for the formation of a shock facing towards the Sun. However, for close-in planets that possess high Keplerian velocities and are frequently located at regions where the host stars wind is still accelerating, a shock may develop ahead of the planet. If the compressed material is able to absorb stellar radiation, then the signature of bow shocks may be observed during transits. Bow-shock models have been investigated in a series of papers (Vidotto et al. 2010, 2011,a,b; Llama et al. 2011) for known transiting systems. Once the signature of a bow-shock is observed, one can infer the magnetic field intensity of the transiting planet. Here, we investigate the potential to use this model to detect magnetic fields of (hypothetical) planets orbiting inside the habitable zone of M-dwarf stars. For these cases, we show, by means of radiative transfer simulations, that the detection of bow-shocks of planets surrounding M-dwarf stars may be more difficult than for the case of close-in giant planets orbiting solar-type stars.
276 - A. A. Vidotto 2013
We perform three-dimensional numerical simulations of stellar winds of early-M dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures $p_{rm tot}$ (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planets magnetic field and $p_{rm tot}$, variations of up to a factor of $3$ in $p_{rm tot}$ (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 percent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M dwarf stars like DT~Vir, DS~Leo and GJ~182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.
We present a survey of far-ultraviolet (FUV; 1150 - 1450 Ang) emission line spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activi ty level to the 90 - 360 Ang extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III, N V, C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 - 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F - M star sample is characterized by a power-law decline (with index $alpha$ ~ -1.1), starting at rotation periods >~3.5 days. Using N V or Si IV spectra and a knowledge of the stars bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 - 360 Ang band with an accuracy of roughly a factor of ~2. Finally, we study the correlation between SPI strength and UV activity in the context of a principal component analysis that controls for the sample biases. We find that SPIs are not a statistically significant contributor to the observed UV activity levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا