Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de Broglie scale. This de Broglie scale is largest for low mass galaxies as momentum is lower, providing a simple explanation for the wide cores of dwarf spheroidal galaxies. Here we extend these wave dark matter ($psi$DM) predictions to the newly discovered class of Ultra Diffuse Galaxies (UDG) that resemble dwarf spheroidal galaxies but with more extended stellar profiles. Currently the best studied example, DF44, has a uniform velocity dispersion of $simeq 33$km/s, extending to at least 3 kpc, that we show is reproduced by our $psi$DM simulations with a soliton radius of $simeq 0.5$ kpc. In the $psi$DM context, we show the relatively flat dispersion profile of DF44 lies between massive galaxies with compact dense solitons, as may be present in the Milky Way on a scale of 100pc and lower mass galaxies where the velocity dispersion declines centrally within a wide, low density soliton, like Antlia II, of radius 3 kpc.