Quantum Hall phase emerging in an array of atoms interacting with photons


الملخص بالإنكليزية

Topological quantum phases underpin many concepts of modern physics. While the existence of disorder-immune topological edge states of electrons usually requires magnetic fields, direct effects of magnetic field on light are very weak. As a result, demonstrations of topological states of photons employ synthetic fields engineered in special complex structures or external time-dependent modulations. Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system, where topological order arises solely from interactions without any fine-tuning. Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits. We believe that our finding will open new horizons in several disciplines including quantum physics, many-body physics, and nonlinear topological photonics, and it will set an important reference point for experiments on qubit arrays and quantum simulators.

تحميل البحث