ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven contact structures: from homogeneous mixing to multilayer networks

74   0   0.0 ( 0 )
 نشر من قبل Alberto Aleta
 تاريخ النشر 2020
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The modeling of the spreading of communicable diseases has experienced significant advances in the last two decades or so. This has been possible due to the proliferation of data and the development of new methods to gather, mine and analyze it. A key role has also been played by the latest advances in new disciplines like network science. Nonetheless, current models still lack a faithful representation of all possible heterogeneities and features that can be extracted from data. Here, we bridge a current gap in the mathematical modeling of infectious diseases and develop a framework that allows to account simultaneously for both the connectivity of individuals and the age-structure of the population. We compare different scenarios, namely, i) the homogeneous mixing setting, ii) one in which only the social mixing is taken into account, iii) a setting that considers the connectivity of individuals alone, and finally, iv) a multilayer representation in which both the social mixing and the number of contacts are included in the model. We analytically show that the thresholds obtained for these four scenarios are different. In addition, we conduct extensive numerical simulations and conclude that heterogeneities in the contact network are important for a proper determination of the epidemic threshold, whereas the age-structure plays a bigger role beyond the onset of the outbreak. Altogether, when it comes to evaluate interventions such as vaccination, both sources of individual heterogeneity are important and should be concurrently considered. Our results also provide an indication of the errors incurred in situations in which one cannot access all needed information in terms of connectivity and age of the population.



قيم البحث

اقرأ أيضاً

The COVID-19 infection cases have surged globally, causing devastations to both the society and economy. A key factor contributing to the sustained spreading is the presence of a large number of asymptomatic or hidden spreaders, who mix among the sus ceptible population without being detected or quarantined. Here we propose an effective non-pharmacological intervention method of detecting the asymptomatic spreaders in contact-tracing networks, and validated it on the empirical COVID-19 spreading network in Singapore. We find that using pure physical spreading equations, the hidden spreaders of COVID-19 can be identified with remarkable accuracy. Specifically, based on the unique characteristics of COVID-19 spreading dynamics, we propose a computational framework capturing the transition probabilities among different infectious states in a network, and extend it to an efficient algorithm to identify asymptotic individuals. Our simulation results indicate that a screening method using our prediction outperforms machine learning algorithms, e.g. graph neural networks, that are designed as baselines in this work, as well as random screening of infections closest contacts widely used by China in its early outbreak. Furthermore, our method provides high precision even with incomplete information of the contract-tracing networks. Our work can be of critical importance to the non-pharmacological interventions of COVID-19, especially with increasing adoptions of contact tracing measures using various new technologies. Beyond COVID-19, our framework can be useful for other epidemic diseases that also feature asymptomatic spreading
A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. H owever, the process for selecting which information to include is not always straightforward. Using data on two agonistic behaviors in a captive population of monk parakeets (Myiopsitta monachus), we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships (between two individuals) affects individual- and group-level social properties. We designed two reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data. Although the behaviors were correlated, the first reference model suggests that the two behaviors convey different information about some social properties and should therefore not be pooled. However, once we controlled for data sparsity, we found that the observed measures corresponded with those from the second reference model. Hence, our initial result may have been due to the unequal frequencies of each behavior. Overall, our findings support pooling the two behaviors. Awareness of how selected measurements can be affected by data properties is warranted, but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions. This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate, prior to using the data in subsequent multilayer network analyses.
We present an evaluation of the effectiveness of manual contact tracing compared to bulletin board contact tracing. We show that bulletin board contact tracing gives comparable results in terms of the reproductive number, duration, prevalence and inc idence but is less resource intensive, easier to implement and offers a wider range of privacy options. Classical contact tracing focuses on contacting individuals whom an infectious person has been in proximity to. A bulletin board approach focuses on identifying locations visited by an infectious person, and then contacting those who were at those locations. We present results comparing their effects on the overall reproductive number as well as the incidence and prevalence of disease. We evaluate them by building a new discrete time stochastic model based on the Susceptible Exposed Infectious and Recovered (SEIR) framework for disease spread. We conduct simulation experiments to quantify the effectiveness of these two models of contact tracing by calibrating the model to be compatible with SARS-CoV-2. Our experiments show that location-based bulletin board contact tracing can improve manual contact tracing.
In the past few decades, the frequency of pandemics has been increased due to the growth of urbanization and mobility among countries. Since a disease spreading in one country could become a pandemic with a potential worldwide humanitarian and econom ic impact, it is important to develop models to estimate the probability of a worldwide pandemic. In this paper, we propose a model of disease spreading in a structural modular complex network (having communities) and study how the number of bridge nodes $n$ that connect communities affects disease spread. We find that our model can be described at a global scale as an infectious transmission process between communities with global infectious and recovery time distributions that depend on the internal structure of each community and $n$. We find that near the critical point as $n$ increases, the disease reaches most of the communities, but each community has only a small fraction of recovered nodes. In addition, we obtain that in the limit $n to infty$, the probability of a pandemic increases abruptly at the critical point. This scenario could make the decision on whether to launch a pandemic alert or not more difficult. Finally, we show that link percolation theory can be used at a global scale to estimate the probability of a pandemic since the global transmissibility between communities has a weak dependence on the global recovery time.
94 - Matuv{s} Medo 2020
We study the epidemic spreading on spatial networks where the probability that two nodes are connected decays with their distance as a power law. As the exponent of the distance dependence grows, model networks smoothly transition from the random net work limit to the regular lattice limit. We show that despite keeping the average number of contacts constant, the increasing exponent hampers the epidemic spreading by making long-distance connections less frequent. The spreading dynamics is influenced by the distance-dependence exponent as well and changes from exponential growth to power-law growth. The observed power-law growth is compatible with recent analyses of empirical data on the spreading of COVID-19 in numerous countries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا