ﻻ يوجد ملخص باللغة العربية
Adversarial patch attacks are among one of the most practical threat models against real-world computer vision systems. This paper studies certified and empirical defenses against patch attacks. We begin with a set of experiments showing that most existing defenses, which work by pre-processing input images to mitigate adversarial patches, are easily broken by simple white-box adversaries. Motivated by this finding, we propose the first certified defense against patch attacks, and propose faster methods for its training. Furthermore, we experiment with different patch shapes for testing, obtaining surprisingly good robustness transfer across shapes, and present preliminary results on certified defense against sparse attacks. Our complete implementation can be found on: https://github.com/Ping-C/certifiedpatchdefense.
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attack
Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery. Applications include aiding interpretability of SAR scenes with their optical counterpar
In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in
State-of-the-art NLP models can often be fooled by adversaries that apply seemingly innocuous label-preserving transformations (e.g., paraphrasing) to input text. The number of possible transformations scales exponentially with text length, so data a
Neural networks are increasingly used in security applications for intrusion detection on industrial control systems. In this work we examine two areas that must be considered for their effective use. Firstly, is their vulnerability to adversarial at