In the quest of finding novel and efficient batteries, a great interest has raised in K-based honeycomb layer oxide materials both for their fundamental properties and potential applications. A key issue in the realization of efficient batteries based on such compounds, is to understand the K-ion diffusion mechanism. However, investigation of potassium-ion (K$^+$) dynamics in materials using magneto-spin properties has so far been challenging, due to its inherently weak nuclear magnetic moment, in contrast to other alkali ions such as lithium and sodium. Spin-polarised muons, having a high gyromagnetic ratio, make the muon spin rotation and relaxation ($mu$+SR) technique ideal for probing ions dynamics in weak magneto-spin moment materials. Here we report the magnetic properties and K+ dynamics in honeycomb layered oxide material of the K$_2$Ni$_2$TeO$_6$ using $mu$+SR measurements. Our low-temperature $mu$+SR results together with, with complementary magnetic susceptibility, find an antiferromagnetic transition at 26 K. Further $mu$+SR studies performed at higher temperatures reveal that potassium ions (K$^+$) become mobile above 250 K and the activation energy for the diffusion process is Ea = 121(13) meV. This is the first time that K+ dynamics in potassium-based battery materials has been measured using $mu$+SR. Finally our results also indicate an interesting possibility that K-ion self diffusion occurs predominantly at the surface of the powder particles. This opens future possibilities for improving ion diffusion and device performance using nano-structuring.