ﻻ يوجد ملخص باللغة العربية
The inf-convolution of risk measures is directly related to risk sharing and general equilibrium, and it has attracted considerable attention in mathematical finance and insurance problems. However, the theory is restricted to finite sets of risk measures. In this study, we extend the inf-convolution of risk measures in its convex-combination form to a countable (not necessarily finite) set of alternatives. The intuitive principle of this approach a generalization of convex weights in the finite case. Subsequently, we extensively generalize known properties and results to this framework. Specifically, we investigate the preservation of properties, dual representations, optimal allocations, and self-convolution.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency pro
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a
Risk assessment under different possible scenarios is a source of uncertainty that may lead to concerning financial losses. We address this issue, first, by adapting a robust framework to the class of spectral risk measures. Second, we propose a Devi
In order to evaluate the quality of the scientific research, we introduce a new family of scientific performance measures, called Scientific Research Measures (SRM). Our proposal originates from the more recent developments in the theory of risk meas