ترغب بنشر مسار تعليمي؟ اضغط هنا

GASP! Generating Abstracts of Scientific Papers from Abstracts of Cited Papers

69   0   0.0 ( 0 )
 نشر من قبل Fabio Massimo Zanzotto
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Creativity is one of the driving forces of human kind as it allows to break current understanding to envision new ideas, which may revolutionize entire fields of knowledge. Scientific research offers a challenging environment where to learn a model for the creative process. In fact, scientific research is a creative act in the formal settings of the scientific method and this creative act is described in articles. In this paper, we dare to introduce the novel, scientifically and philosophically challenging task of Generating Abstracts of Scientific Papers from abstracts of cited papers (GASP) as a text-to-text task to investigate scientific creativity, To foster research in this novel, challenging task, we prepared a dataset by using services where that solve the problem of copyright and, hence, the dataset is public available with its standard split. Finally, we experimented with two vanilla summarization systems to start the analysis of the complexity of the GASP task.



قيم البحث

اقرأ أيضاً

In order to disseminate the exponential extent of knowledge being produced in the form of scientific publications, it would be best to design mechanisms that connect it with already existing rich repository of concepts -- the Wikipedia. Not only does it make scientific reading simple and easy (by connecting the involved concepts used in the scientific articles to their Wikipedia explanations) but also improves the overall quality of the article. In this paper, we present a novel metapath based method, WikiM, to efficiently wikify scientific abstracts -- a topic that has been rarely investigated in the literature. One of the prime motivations for this work comes from the observation that, wikified abstracts of scientific documents help a reader to decide better, in comparison to the plain abstracts, whether (s)he would be interested to read the full article. We perform mention extraction mostly through traditional tf-idf measures coupled with a set of smart filters. The entity linking heavily leverages on the rich citation and author publication networks. Our observation is that various metapaths defined over these networks can significantly enhance the overall performance of the system. For mention extraction and entity linking, we outperform most of the competing state-of-the-art techniques by a large margin arriving at precision values of 72.42% and 73.8% respectively over a dataset from the ACL Anthology Network. In order to establish the robustness of our scheme, we wikify three other datasets and get precision values of 63.41%-94.03% and 67.67%-73.29% respectively for the mention extraction and the entity linking phase.
Previous work for text summarization in scientific domain mainly focused on the content of the input document, but seldom considering its citation network. However, scientific papers are full of uncommon domain-specific terms, making it almost imposs ible for the model to understand its true meaning without the help of the relevant research community. In this paper, we redefine the task of scientific papers summarization by utilizing their citation graph and propose a citation graph-based summarization model CGSum which can incorporate the information of both the source paper and its references. In addition, we construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains and 661K citation relationships. The entire dataset constitutes a large connected citation graph. Extensive experiments show that our model can achieve competitive performance when compared with the pretrained models even with a simple architecture. The results also indicates the citation graph is crucial to better understand the content of papers and generate high-quality summaries.
We demonstrate a comprehensive framework that accounts for citation dynamics of scientific papers and for the age distribution of references. We show that citation dynamics of scientific papers is nonlinear and this nonlinearity has far-reaching cons equences, such as diverging citation distributions and runaway papers. We propose a nonlinear stochastic dynamic model of citation dynamics based on link copying/redirection mechanism. The model is fully calibrated by empirical data and does not contain free parameters. This model can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
Tables in scientific papers contain a wealth of valuable knowledge for the scientific enterprise. To help the many of us who frequently consult this type of knowledge, we present Tab2Know, a new end-to-end system to build a Knowledge Base (KB) from t ables in scientific papers. Tab2Know addresses the challenge of automatically interpreting the tables in papers and of disambiguating the entities that they contain. To solve these problems, we propose a pipeline that employs both statistical-based classifiers and logic-based reasoning. First, our pipeline applies weakly supervised classifiers to recognize the type of tables and columns, with the help of a data labeling system and an ontology specifically designed for our purpose. Then, logic-based reasoning is used to link equivalent entities (via sameAs links) in different tables. An empirical evaluation of our approach using a corpus of papers in the Computer Science domain has returned satisfactory performance. This suggests that ours is a promising step to create a large-scale KB of scientific knowledge.
The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms -- a f undamental concept across the sciences encompassing activities, functions and causal relations, ranging from cellular processes to economic impacts. We extract this information from the natural language of scientific papers by developing a broad, unified schema that strikes a balance between relevance and breadth. We annotate a dataset of mechanisms with our schema and train a model to extract mechanism relations from papers. Our experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature, outperforming the prominent PubMed search in a study with clinical experts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا