ﻻ يوجد ملخص باللغة العربية
We introduce the Nuclear Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrodinger equation simultaneously for electrons and other quantum species. In contrast to already existing multicomponent approaches, in this work we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parametrization of the total wave function as a matrix product state allows NEAP-DMRG to accurately approximate full configuration interaction energies of molecular systems with more than three nuclei and twelve particles in total, which is currently a major challenge for other multicomponent approaches. We present NEAP-DMRG results for two few-body systems, i.e., H$_2$ and H$_3^+$, and one larger system, namely BH$_3$
We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consiste
We recently introduced [J. Chem. Phys. 152 2020, 204103] the nuclear-electronic all-particle density matrix renormalization group method (NEAP-DMRG) to solve the molecular Schr{o}dinger equation, based on a stochastically optimized orbital basis, wit
In this work, we simulate the electron dynamics in molecular systems with the Time-Dependent Density Matrix Renormalization Group (TD-DMRG) algorithm. We leverage the generality of the so-called tangent-space TD-DMRG formulation and design a computat
We present an approximate scheme for analytical gradients and nonadiabatic couplings for calculating state-average density matrix renormalization group self-consistent-field wavefunction. Our formalism follows closely the state-average complete activ