ﻻ يوجد ملخص باللغة العربية
The effective field theory for collective rotations of triaxially deformed nuclei is generalized to odd-mass nuclei by including the angular momentum of the valence nucleon as an additional degree of freedom. The Hamiltonian is constructed up to next-to-leading order within the effective field theory formalism. The applicability of this Hamiltonian is examined by describing the wobbling bands observed in the lutetium isotopes $^{161,163,165,167}$Lu. It is found that by taking into account the next-to-leading order corrections, quartic in the rotor angular momentum, the wobbling energies $E_{textrm{wob}}$ and spin-rotational frequency relations $omega(I)$ are better described than with the leading order Hamiltonian.
We develop an effective field theory (EFT) for deformed odd-mass nuclei. These are described as an axially symmetric core to which a nucleon is coupled. In the coordinate system fixed to the core the nucleon is subject to an axially symmetric potenti
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections ar
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu-Goldstone modes using symmetry arguments only. We extend that
We calculate the form factors of the electromagnetic nucleon-to-$Delta$-resonance transition to third chiral order in manifestly Lorentz-invariant chiral effective field theory. For the purpose of generating a systematic power counting, the complex-m