ﻻ يوجد ملخص باللغة العربية
The recent study of SN 2013fs flash spectrum suggests enormous for SN IIP explosion energy, far beyond possibilities of the neutrino mechanism. The issue of the explosion energy of SN 2013fs is revisited making use of effects of the early supernova interaction with the dense circumstellar shell. The velocity of the cold dense shell between reverse and forward shocks is inferred from the analysis of the broad heii,4686,AA on day 2.4. This velocity alongside with other observables provide us with an alternative energy estimate of $sim1.8times10^{51}$,erg for the preferred mass of $sim10$msun. The inferred value is within the range of the neutrino driven explosion.
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the
We present observations and analysis of SN 2020cxd, a Low luminous (LL), long-lived Type IIP SN. This object was a clear outlier in the magnitude-limited SN sample recently presented by the ZTF Bright Transient Survey. We demonstrate that SN 2020cxd
Type IIP supernovae (SNe IIP), which represent the most common class of core-collapse (CC) SNe, show a rapid increase in continuum polarization just after entering the tail phase. This feature can be explained by a highly asymmetric helium core, whic
The unusual Type IIP SN 2017gmr is revisited in order to pinpoint the origin of its anomalous features, including the peculiar light curve after about 100 days. The hydrodynamic modelling suggests the enormous explosion energy of about 10^52 erg. We
We present the results the photometric observations of the Type IIP supernova SN 2012aw obtained for the time interval from 7 till 371 days after the explosion. Using the previously published values of the photospheric velocities weve computed the hy