Elucidating the $^1$H NMR relaxation mechanism in polydisperse polymers and bitumen using measurements, MD simulations, and models


الملخص بالإنكليزية

The mechanism behind the $^1$H NMR frequency dependence of $T_1$ and the viscosity dependence of $T_2$ for polydisperse polymers and bitumen remains elusive. We elucidate the matter through NMR relaxation measurements of polydisperse polymers over an extended range of frequencies ($f_0 = 0.01 leftrightarrow$ 400 MHz) and viscosities ($eta = 385 leftrightarrow 102,000$ cP) using $T_{1}$ and $T_2$ in static fields, $T_{1}$ field-cycling relaxometry, and $T_{1rho}$ in the rotating frame. We account for the anomalous behavior of the log-mean relaxation times $T_{1LM} propto f_0$ and $T_{2LM} propto (eta/T)^{-1/2}$ with a phenomenological model of $^1$H-$^1$H dipole-dipole relaxation which includes a distribution in molecular correlation times and internal motions of the non-rigid polymer branches. We show that the model also accounts for the anomalous $T_{1LM}$ and $T_{2LM}$ in previously reported bitumen measurements. We find that molecular dynamics (MD) simulations of the $T_{1} propto f_0$ dispersion and $T_2$ of similar polymers simulated over a range of viscosities ($eta = 1 leftrightarrow 1,000$ cP) are in good agreement with measurements and the model. The $T_{1} propto f_0$ dispersion at high viscosities agrees with previously reported MD simulations of heptane confined in a polymer matrix, which suggests a common NMR relaxation mechanism between viscous polydisperse fluids and fluids under confinement, without the need to invoke paramagnetism.

تحميل البحث