ﻻ يوجد ملخص باللغة العربية
Citywide crowd flow analytics is of great importance to smart city efforts. It aims to model the crowd flow (e.g., inflow and outflow) of each region in a city based on historical observations. Nowadays, Convolutional Neural Networks (CNNs) have been widely adopted in raster-based crowd flow analytics by virtue of their capability in capturing spatial dependencies. After revisiting CNN-based methods for different analytics tasks, we expose two common critical drawbacks in the existing uses: 1) inefficiency in learning global spatial dependencies, and 2) overlooking latent region functions. To tackle these challenges, in this paper we present a novel framework entitled DeepLGR that can be easily generalized to address various citywide crowd flow analytics problems. This framework consists of three parts: 1) a local feature extraction module to learn representations for each region; 2) a global context module to extract global contextual priors and upsample them to generate the global features; and 3) a region-specific predictor based on tensor decomposition to provide customized predictions for each region, which is very parameter-efficient compared to previous methods. Extensive experiments on two typical crowd flow analytics tasks demonstrate the effectiveness, stability, and generality of our framework.
Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In co
In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous
Deep convolutional neural networks are hindered by training instability and feature redundancy towards further performance improvement. A promising solution is to impose orthogonality on convolutional filters. We develop an efficient approach to im
We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorpor
The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popu