ترغب بنشر مسار تعليمي؟ اضغط هنا

Financial replicator dynamics: emergence of systemic-risk-averting strategies

69   0   0.0 ( 0 )
 نشر من قبل Indrajit Saha
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a random financial network with a large number of agents. The agents connect through credit instruments borrowed from each other or through direct lending, and these create the liabilities. The settlement of the debts of various agents at the end of the contract period can be expressed as solutions of random fixed point equations. Our first step is to derive these solutions (asymptotically), using a recent result on random fixed point equations. We consider a large population in which agents adapt one of the two available strategies, risky or risk-free investments, with an aim to maximize their expected returns (or surplus). We aim to study the emerging strategies when different types of replicator dynamics capture inter-agent interactions. We theoretically reduced the analysis of the complex system to that of an appropriate ordinary differential equation (ODE). We proved that the equilibrium strategies converge almost surely to that of an attractor of the ODE. We also derived the conditions under which a mixed evolutionary stable strategy (ESS) emerges; in these scenarios the replicator dynamics converges to an equilibrium at which the expected returns of both the populations are equal. Further the average dynamics (choices based on large observation sample) always averts systemic risk events (events with large fraction of defaults). We verified through Monte Carlo simulations that the equilibrium suggested by the ODE method indeed represents the limit of the dynamics.



قيم البحث

اقرأ أيضاً

In nature and human societies, the effects of homogeneous and heterogeneous characteristics on the evolution of collective behaviors are quite different from each other. It is of great importance to understand the underlying mechanisms of the occurre nce of such differences. By incorporating pair pattern strategies and reference point strategies into an agent-based model, we have investigated the coupled effects of heterogeneous investment strategies and heterogeneous risk tolerance on price fluctuations. In the market flooded with the investors with homogeneous investment strategies or homogeneous risk tolerance, large price fluctuations are easy to occur. In the market flooded with the investors with heterogeneous investment strategies or heterogeneous risk tolerance, the price fluctuations are suppressed. For a heterogeneous population, the coexistence of investors with pair pattern strategies and reference point strategies causes the price to have a slow fluctuation around a typical equilibrium point and both a large price fluctuation and a no-trading state are avoided, in which the pair pattern strategies push the system far away from the equilibrium while the reference point strategies pull the system back to the equilibrium. A theoretical analysis indicates that the evolutionary dynamics in the present model is governed by the competition between different strategies. The strategy that causes large price fluctuations loses more while the strategy that pulls the system back to the equilibrium gains more. Overfrequent trading does harm to ones pursuit for more wealth.
181 - T. R. Hurd 2019
This systemic risk paper introduces inhomogeneous random financial networks (IRFNs). Such models are intended to describe parts, or the entirety, of a highly heterogeneous network of banks and their interconnections, in the global financial system. B oth the balance sheets and the stylized crisis behaviour of banks are ingredients of the network model. A systemic crisis is pictured as triggered by a shock to banks balance sheets, which then leads to the propagation of damaging shocks and the potential for amplification of the crisis, ending with the system in a cascade equilibrium. Under some conditions the model has ``locally tree-like independence (LTI), where a general percolation theoretic argument leads to an analytic fixed point equation describing the cascade equilibrium when the number of banks $N$ in the system is taken to infinity. This paper focusses on mathematical properties of the framework in the context of Eisenberg-Noe solvency cascades generalized to account for fractional bankruptcy charges. New results including a definition and proof of the ``LTI property of the Eisenberg-Noe solvency cascade mechanism lead to explicit $N=infty$ fixed point equations that arise under very general model specifications. The essential formulas are shown to be implementable via well-defined approximation schemes, but numerical exploration of some of the wide range of potential applications of the method is left for future work.
The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following this methodological perspective we introduce here the Accounting Network, i.e. the network we can extract through vector similarities techniques from companies financial statements. We build the Accounting Network on a large database of worldwide banks in the period 2001-2013, covering the onset of the global financial crisis of mid-2007. After a careful data cleaning, we apply a quality check in the construction of the network, introducing a parameter (the Quality Ratio) capable of trading off the size of the sample (coverage) and the representativeness of the financial statements (accuracy). We compute several basic network statistics and check, with the Louvain community detection algorithm, for emerging communities of banks. Remarkably enough sensible regional aggregations show up with the Japanese and the US clusters dominating the community structure, although the presence of a geographically mixed community points to a gradual convergence of banks into similar supranational practices. Finally, a Principal Component Analysis procedure reveals the main economic components that influence communities heterogeneity. Even using the most basic vector similarity hypotheses on the composition of the financial statements, the signature of the financial crisis clearly arises across the years around 2008. We finally discuss how the Accounting Networks can be improved to reflect the best practices in the financial statement analysis.
Management of systemic risk in financial markets is traditionally associated with setting (higher) capital requirements for market participants. There are indications that while equity ratios have been increased massively since the financial crisis, systemic risk levels might not have lowered, but even increased. It has been shown that systemic risk is to a large extent related to the underlying network topology of financial exposures. A natural question arising is how much systemic risk can be eliminated by optimally rearranging these networks and without increasing capital requirements. Overlapping portfolios with minimized systemic risk which provide the same market functionality as empirical ones have been studied by [pichler2018]. Here we propose a similar method for direct exposure networks, and apply it to cross-sectional interbank loan networks, consisting of 10 quarterly observations of the Austrian interbank market. We show that the suggested framework rearranges the network topology, such that systemic risk is reduced by a factor of approximately 3.5, and leaves the relevant economic features of the optimized network and its agents unchanged. The presented optimization procedure is not intended to actually re-configure interbank markets, but to demonstrate the huge potential for systemic risk management through rearranging exposure networks, in contrast to increasing capital requirements that were shown to have only marginal effects on systemic risk [poledna2017]. Ways to actually incentivize a self-organized formation toward optimal network configurations were introduced in [thurner2013] and [poledna2016]. For regulatory policies concerning financial market stability the knowledge of minimal systemic risk for a given economic environment can serve as a benchmark for monitoring actual systemic risk in markets.
Financial markets are exposed to systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial c ontagion arises from indirect interconnections between financial institutions mediated by financial markets. This indirect interconnection occurs when financial institutions invest in common assets and is referred to as overlapping portfolios. In this work we quantify systemic risk from indirect interconnections between financial institutions. Having complete information of security holdings of major Mexican financial intermediaries and the ability to uniquely identify securities in their portfolios, allows us to represent the Mexican financial system as a bipartite network of securities and financial institutions. This makes it possible to quantify systemic risk arising from overlapping portfolios. We show that focusing only on direct exposures underestimates total systemic risk levels by up to 50%. By representing the financial system as a multi-layer network of direct exposures (default contagion) and indirect exposures (overlapping portfolios) we estimate the mutual influence of different channels of contagion. The method presented here is the first objective data-driven quantification of systemic risk on national scales that includes overlapping portfolios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا