ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Image Captions and Multitask Learning for Recommending Query Reformulations

71   0   0.0 ( 0 )
 نشر من قبل Gaurav Verma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactive search sessions often contain multiple queries, where the user submits a reformulated version of the previous query in response to the original results. We aim to enhance the query recommendation experience for a commercial image search engine. Our proposed methodology incorporates current state-of-the-art practices from relevant literature -- the use of generation-based sequence-to-sequence models that capture session context, and a multitask architecture that simultaneously optimizes the ranking of results. We extend this setup by driving the learning of such a model with captions of clicked images as the target, instead of using the subsequent query within the session. Since these captions tend to be linguistically richer, the reformulation mechanism can be seen as assistance to construct more descriptive queries. In addition, via the use of a pairwise loss for the secondary ranking task, we show that the generated reformulations are more diverse.



قيم البحث

اقرأ أيضاً

High Quality Related Search Query Suggestions task aims at recommending search queries which are real, accurate, diverse, relevant and engaging. Obtaining large amounts of query-quality human annotations is expensive. Prior work on supervised query s uggestion models suffered from selection and exposure bias, and relied on sparse and noisy immediate user-feedback (e.g., clicks), leading to low quality suggestions. Reinforcement Learning techniques employed to reformulate a query using terms from search results, have limited scalability to large-scale industry applications. To recommend high quality related search queries, we train a Deep Reinforcement Learning model to predict the query a user would enter next. The reward signal is composed of long-term session-based user feedback, syntactic relatedness and estimated naturalness of generated query. Over the baseline supervised model, our proposed approach achieves a significant relative improvement in terms of recommendation diversity (3%), down-stream user-engagement (4.2%) and per-sentence word repetitions (82%).
Manifold ranking has been successfully applied in query-oriented multi-document summarization. It not only makes use of the relationships among the sentences, but also the relationships between the given query and the sentences. However, the informat ion of original query is often insufficient. So we present a query expansion method, which is combined in the manifold ranking to resolve this problem. Our method not only utilizes the information of the query term itself and the knowledge base WordNet to expand it by synonyms, but also uses the information of the document set itself to expand the query in various ways (mean expansion, variance expansion and TextRank expansion). Compared with the previous query expansion methods, our method combines multiple query expansion methods to better represent query information, and at the same time, it makes a useful attempt on manifold ranking. In addition, we use the degree of word overlap and the proximity between words to calculate the similarity between sentences. We performed experiments on the datasets of DUC 2006 and DUC2007, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.
Feature fusion is a commonly used strategy in image retrieval tasks, which aggregates the matching responses of multiple visual features. Feasible sets of features can be either descriptors (SIFT, HSV) for an entire image or the same descriptor for d ifferent local parts (face, body). Ideally, the to-be-fused heterogeneous features are pre-assumed to be discriminative and complementary to each other. However, the effectiveness of different features varies dramatically according to different queries. That is to say, for some queries, a feature may be neither discriminative nor complementary to existing ones, while for other queries, the feature suffices. As a result, it is important to estimate the effectiveness of features in a query-adaptive manner. To this end, this article proposes a new late fusion scheme at the score level. We base our method on the observation that the sorted score curves contain patterns that describe their effectiveness. For example, an L-shaped curve indicates that the feature is discriminative while a gradually descending curve suggests a bad feature. As such, this paper introduces a query-adaptive late fusion pipeline. In the hand-crafted version, it can be an unsupervised approach to tasks like particular object retrieval. In the learning version, it can also be applied to supervised tasks like person recognition and pedestrian retrieval, based on a trainable neural module. Extensive experiments are conducted on two object retrieval datasets and one person recognition dataset. We show that our method is able to highlight the good features and suppress the bad ones, is resilient to distractor features, and achieves very competitive retrieval accuracy compared with the state of the art. In an additional person re-identification dataset, the application scope and limitation of the proposed method are studied.
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark -- and can be considered to be an efficient (but slightly less effective) alternative to other Transformer-based architectures that em ploy (i) large-scale pretraining (high training cost), (ii) joint encoding of query and document (high inference cost), and (iii) larger number of Transformer layers (both high training and high inference costs). Since, a variant of the TK model -- called TKL -- has been developed that incorporates local self-attention to efficiently process longer input sequences in the context of document ranking. In this work, we propose a novel Conformer layer as an alternative approach to scale TK to longer input sequences. Furthermore, we incorporate query term independence and explicit term matching to extend the model to the full retrieval setting. We benchmark our models under the strictly blind evaluation setting of the TREC 2020 Deep Learning track and find that our proposed architecture changes lead to improved retrieval quality over TKL. Our best model also outperforms all non-neural runs (trad) and two-thirds of the pretrained Transformer-based runs (nnlm) on NDCG@10.
69 - Yile Liang , Tieyun Qian 2021
Recommender systems have played a vital role in online platforms due to the ability of incorporating users personal tastes. Beyond accuracy, diversity has been recognized as a key factor in recommendation to broaden users horizons as well as to promo te enterprises sales. However, the trading-off between accuracy and diversity remains to be a big challenge, and the data and user biases have not been explored yet. In this paper, we develop an adaptive learning framework for accurate and diversified recommendation. We generalize recent proposed bi-lateral branch network in the computer vision community from image classification to item recommendation. Specifically, we encode domain level diversity by adaptively balancing accurate recommendation in the conventional branch and diversified recommendation in the adaptive branch of a bilateral branch network. We also capture user level diversity using a two-way adaptive metric learning backbone network in each branch. We conduct extensive experiments on three real-world datasets. Results demonstrate that our proposed approach consistently outperforms the state-of-the-art baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا