The Springer resolution of the nilpotent cone is used to give a geometric construction of the irreducible representations of Weyl groups. Borho and MacPherson obtain the Springer correspondence by applying the decomposition theorem to the Springer resolution, establishing an injective map from the set of irreducible Weyl group representations to simple equivariant perverse sheaves on the nilpotent cone. In this manuscript, we consider a generalization of the Springer resolution using a variety defined by the first author. Our main result shows that in the type A case, applying the decomposition theorem to this map yields all simple perverse sheaves on the nilpotent cone with multiplicity as predicted by Lusztigs generalized Springer correspondence.