ﻻ يوجد ملخص باللغة العربية
Concentration-compactness is used to prove compactness of maximising sequences for a variational problem governing symmetric steady vortex-pairs in a uniform planar ideal fluid flow, where the kinetic energy is to be maximised and the constraint set comprises the set of all equimeasurable rearrangements of a given function (representing vorticity) that have prescribed impulse (lnear momentum). A form of orbital stability is deduced.
The paper provides an extension, to fractional order Sobolev spaces, of the classical result of Murat and Brezis which states that the positive cone of elements in $H^{-1}(Omega)$ compactly embeds in $W^{-1,q}(Omega)$, for every $q < 2$ and for any o
We develop a functional framework suitable for the treatment of partial differential equations and variational problems posed on evolving families of Banach spaces. We propose a definition for the weak time derivative which does not rely on the avail
For $l$-homogeneous linear differential operators $mathcal{A}$ of constant rank, we study the implication $v_jrightharpoonup v$ in $X$ and $mathcal{A} v_jrightarrow mathcal{A} v$ in $W^{-l}Y$ implies $F(v_j)rightsquigarrow F(v)$ in $Z$, where $F$ is
This paper is devoted to stability estimates for the interaction energy with strictly radially decreasing interaction potentials, such as the Coulomb and Riesz potentials. For a general density function, we first prove a stability estimate in terms o
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes