ﻻ يوجد ملخص باللغة العربية
In this paper we aim to investigate the process of massless scalar wave scattering due to a self-dual black hole through the partial wave method. We calculate the phase shift analytically at the low energy limit and we show that the dominant term of the differential cross section at the small angle limit is modified by the presence of parameters related to the polymeric function and minimum area of a self-dual black hole. We also find that the result for the absorption cross section is given by the event horizon area of the self-dual black hole at the low frequency limit. We also show that, contrarily to the case of a Schwarzschild black hole, the differential scattering/absorption cross section of a self-dual black hole is nonzero at the zero mass limit. In addition, we verify these results by numerically solving the radial equation for arbitrary frequencies.
In this work, we investigate the quasinormal modes for a massive scalar field with a nonminimal coupling with gravity in the spacetime of a loop quantum black hole, known as the Self-Dual Black Hole. In this way, we have calculated the characteristic
A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of a pair of black holes. The link is formally provided by
We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hol
Quantum scattering amplitudes for massive matter have received new attention in connection to classical calculations relevant to gravitational-wave physics. Amplitude methods and insights are now employed for precision computations of observables nee
In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. Th