ترغب بنشر مسار تعليمي؟ اضغط هنا

Wigner-Smith matrix, exponential functional of the matrix Brownian motion and matrix Dufresne identity

165   0   0.0 ( 0 )
 نشر من قبل Christophe Texier
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a multichannel wire with a disordered region of length $L$ and a reflecting boundary. The reflection of a wave of frequency $omega$ is described by the scattering matrix $mathcal{S}(omega)$, encoding the probability amplitudes to be scattered from one channel to another. The Wigner-Smith time delay matrix $mathcal{Q}=-mathrm{i}, mathcal{S}^daggerpartial_omegamathcal{S}$ is another important matrix encoding temporal aspects of the scattering process. In order to study its statistical properties, we split the scattering matrix in terms of two unitary matrices, $mathcal{S}=mathrm{e}^{2mathrm{i}kL}mathcal{U}_Lmathcal{U}_R$ (with $mathcal{U}_L=mathcal{U}_R^mathrm{T}$ in the presence of TRS), and introduce a novel symmetrisation procedure for the Wigner-Smith matrix: $widetilde{mathcal{Q}} =mathcal{U}_R,mathcal{Q},mathcal{U}_R^dagger = (2L/v),mathbf{1}_N -mathrm{i},mathcal{U}_L^daggerpartial_omegabig(mathcal{U}_Lmathcal{U}_Rbig),mathcal{U}_R^dagger$, where $k$ is the wave vector and $v$ the group velocity. We demonstrate that $widetilde{mathcal{Q}}$ can be expressed under the form of an exponential functional of a matrix Brownian motion. For semi-infinite wires, $Ltoinfty$, using a matricial extension of the Dufresne identity, we recover straightforwardly the joint distribution for $mathcal{Q}$s eigenvalues of Brouwer and Beenakker [Physica E 9 (2001) p. 463]. For finite length $L$, the exponential functional representation is used to calculate the first moments $langlemathrm{tr}(mathcal{Q})rangle$, $langlemathrm{tr}(mathcal{Q}^2)rangle$ and $langlebig[mathrm{tr}(mathcal{Q})big]^2rangle$. Finally we derive a partial differential equation for the resolvent $g(z;L)=lim_{Ntoinfty}(1/N),mathrm{tr}big{big( z,mathbf{1}_N - N,mathcal{Q}big)^{-1}big}$ in the large $N$ limit.



قيم البحث

اقرأ أيضاً

245 - Brian Rider , Benedek Valko 2014
We prove a version of the classical Dufresne identity for matrix processes. In particular, we show that the inverse Wishart laws on the space of positive definite r x r matrices can be realized by the infinite time horizon integral of M_t times its t ranspose in which t -> M_t is a drifted Brownian motion on the general linear group. This solves a problem in the study of spiked random matrix ensembles which served as the original motivation for this result. Various known extensions of the Dufresne identity (and their applications) are also shown to have analogs in this setting. For example, we identify matrix valued diffusions built from M_t which generalize in a natural way the scalar processes figuring into the geometric Levy and Pitman theorems of Matsumoto and Yor.
We consider wave propagation in a complex structure coupled to a finite number $N$ of scattering channels, such as chaotic cavities or quantum dots with external leads. Temporal aspects of the scattering process are analysed through the concept of ti me delays, related to the energy (or frequency) derivative of the scattering matrix $mathcal{S}$. We develop a random matrix approach to study the statistical properties of the symmetrised Wigner-Smith time-delay matrix $mathcal{Q}_s=-mathrm{i}hbar,mathcal{S}^{-1/2}big(partial_varepsilonmathcal{S}big),mathcal{S}^{-1/2}$, and obtain the joint distribution of $mathcal{S}$ and $mathcal{Q}_s$ for the system with non-ideal contacts, characterised by a finite transmission probability (per channel) $0<Tleq1$. We derive two representations of the distribution of $mathcal{Q}_s$ in terms of matrix integrals specified by the Dyson symmetry index $beta=1,2,4$ (the general case of unequally coupled channels is also discussed). We apply this to the Wigner time delay $tau_mathrm{W}=(1/N),mathrm{tr}big{mathcal{Q}_sbig}$, which is an important quantity providing the density of states of the open system. Using the obtained results, we determine the distribution $mathscr{P}_{N,beta}(tau)$ of the Wigner time delay in the weak coupling limit $NTll1$ and identify three different asymptotic regimes.
422 - H. Boos , F. Gohmann , A. Klumper 2012
We collect and systematize general definitions and facts on the application of quantum groups to the construction of functional relations in the theory of integrable systems. As an example, we reconsider the case of the quantum group $U_q(mathcal L(m athfrak{sl}_2))$ related to the six-vertex model. We prove the full set of the functional relations in the form independent of the representation of the quantum group in the quantum space and specialize them to the case of the six-vertex model.
We describe solutions of the matrix equation $exp(z(A-I_n))=A$, where $z in {mathbb C}$. Applications in quantum computing are given. Both normal and nonnormal matrices are studied. For normal matrices, the Lambert W-function plays a central role.
135 - J. Bouttier 2011
This chapter is an introduction to the connection between random matrices and maps, i.e graphs drawn on surfaces. We concentrate on the one-matrix model and explain how it encodes and allows to solve a map enumeration problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا