ﻻ يوجد ملخص باللغة العربية
An exponential increase in the performance of silicon microelectronics and the demand to manufacture in great volumes has created an ecosystem that requires increasingly complex tools to fabricate and characterize the next generation of chips. However, the cost to develop and produce the next generation of these tools has also risen exponentially, to the point where the risk associated with progressing to smaller feature sizes has created pain points throughout the ecosystem. The present challenge includes shrinking the smallest features from nanometers to atoms (10 nm corresponds to 30 silicon atoms). Relaxing the requirement for achieving scalable manufacturing creates the opportunity to evaluate ideas not one or two generations into the future, but at the absolute physical limit of atoms themselves. This article describes recent advances in atomic precision advanced manufacturing (APAM) that open the possibility of exploring opportunities in digital electronics. Doing so will require advancing the complexity of APAM devices and integrating APAM with CMOS.
The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered p
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an app
Proton radiation damage is an important failure mechanism for electronic devices in near-Earth orbits, deep space and high energy physics facilities. Protons can cause ionizing damage and atomic displacements, resulting in device degradation and malf
Accurate extraction of liquid is the first step towards low-volume liquid delivery and nanocharacterization, which plays a significant role in biomedical research. In this study, a tip-shaped graphene nanopipette (GNP) is proposed by encapsulating th
Artificial Intelligence (AI) promises to fundamentally transform society but faces multiple challenges in doing so. In particular, state-of-the-art neuromorphic devices used to implement AI typically lack processes like neuromodulation and neural osc