ﻻ يوجد ملخص باللغة العربية
With a booming number of Type Ia supernovae (SNe Ia) discovered within a few days of their explosions, a fraction of SNe Ia that show luminosity excess in the early phase (early-excess SNe Ia) have been confirmed. In this article, we report early-phase observations of seven photometrically normal SNe Ia (six early detections and one deep non-detection limit) at the COSMOS field through a half-year transient survey as a part of the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP). In particular, a blue light-curve excess was discovered for HSC17bmhk, a normal SN Ia with rise time longer than 18.8 days, during the first four days after the discovery. The blue early excess in optical wavelength can be explained not only by interactions with a non-degenerate companion or surrounding dense circumstellar matter but also radiation powered by radioactive decays of $^{56}$Ni at the surface of the SN ejecta. Given the growing evidence of the early-excess discoveries in normal SNe Ia that have longer rise times than the average and a similarity in the nature of the blue excess to a luminous SN Ia subclass, we infer that early excess discovered in HSC17bmhk and other normal SNe Ia are most likely attributed to radioactive $^{56}$Ni decay at the surface of the SN ejecta. In order to successfully identify normal SNe Ia with early excess similar to that of HSC17bmhk, early UV photometries or high-cadence blue-band surveys are necessary.
Rapidly evolving transients form a new class of transients which show shorter timescales of the light curves than those of typical core-collapse and thermonuclear supernovae. We performed a systematic search for rapidly evolving transients using the
Recent studies have demonstrated the diversity in type Ia supernovae (SNe Ia) at early times and highlighted a need for a better understanding of the explosion physics as manifested by observations soon after explosion. To this end, we present a Mont
We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here
In the dense stellar environment of the globular clusters, compact binaries are produced dynamically. Therefore the fraction of type Ia supernovae that explode in globular clusters is expected to be higher than the fraction of mass residing in these.