ﻻ يوجد ملخص باللغة العربية
Camera motion deblurring is an important low-level vision task for achieving better imaging quality. When a scene has outliers such as saturated pixels, the captured blurred image becomes more difficult to restore. In this paper, we propose a novel method to handle camera motion blur with outliers. We first propose an edge-aware scale-recurrent network (EASRN) to conduct deblurring. EASRN has a separate deblurring module that removes blur at multiple scales and an upsampling module that fuses different input scales. Then a salient edge detection network is proposed to supervise the training process and constraint the edges restoration. By simulating camera motion and adding various light sources, we can generate blurred images with saturation cutoff. Using the proposed data generation method, our network can learn to deal with outliers effectively. We evaluate our method on public test datasets including the GoPro dataset, Kohlers dataset and Lais dataset. Both objective evaluation indexes and subjective visualization show that our method results in better deblurring quality than other state-of-the-art approaches.
The defocus deblurring raised from the finite aperture size and exposure time is an essential problem in the computational photography. It is very challenging because the blur kernel is spatially varying and difficult to estimate by traditional metho
Recent work has shown impressive results on data-driven defocus deblurring using the two-image views available on modern dual-pixel (DP) sensors. One significant challenge in this line of research is access to DP data. Despite many cameras having DP
In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imag
We present a highly efficient blind restoration method to remove mild blur in natural images. Contrary to the mainstream, we focus on removing slight blur that is often present, damaging image quality and commonly generated by small out-of-focus, len
We introduce the {Destructive Object Handling} (DOH) problem, which models aspects of many real-world allocation problems, such as shipping explosive munitions, scheduling processes in a cluster with fragile nodes, re-using passwords across multiple