ﻻ يوجد ملخص باللغة العربية
We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.
Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social ne
Link prediction for knowledge graphs aims to predict missing connections between entities. Prevailing methods are limited to a transductive setting and hard to process unseen entities. The recent proposed subgraph-based models provided alternatives t
This paper studies few-shot relation extraction, which aims at predicting the relation for a pair of entities in a sentence by training with a few labeled examples in each relation. To more effectively generalize to new relations, in this paper we st
Training a Generative Adversarial Networks (GAN) for a new domain from scratch requires an enormous amount of training data and days of training time. To this end, we propose DAWSON, a Domain Adaptive FewShot Generation FrameworkFor GANs based on met
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning