ﻻ يوجد ملخص باللغة العربية
We explore the cosmological signals of theories in which the neutrinos decay into invisible dark radiation after becoming non-relativistic. We show that in this scenario, near-future large scale structure measurements from the Euclid satellite, when combined with cosmic microwave background data from Planck, may allow an independent determination of both the lifetime of the neutrinos and the sum of their masses. These parameters can be independently determined because the Euclid data will cover a range of redshifts, allowing the growth of structure over time to be tracked. If neutrinos are stable on cosmological timescales, these observations can improve the lower limit on the neutrino lifetime by seven orders of magnitude, from $mathcal{O}(10)$ years to $2times 10^8$ years ($95%$ C.L.), without significantly affecting the measurement of neutrino mass. On the other hand, if neutrinos decay after becoming non-relativistic but on timescales less than $mathcal{O}(100)$ million years, these observations may allow, not just the first measurement of the sum of neutrino masses, but also the determination of the neutrino lifetime from cosmology.
The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constr
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such
Recent advances in cosmic observations have brought us to the verge of discovery of the absolute scale of neutrino masses. Nonzero neutrino masses are known evidence of new physics beyond the Standard Model. Our understanding of the clustering of mat
The interplay between cosmology and earth based experiments is crucial in order to pin down neutrino physics. Indeed cosmology can provide very tight, yet model dependent, constraints on some neutrino properties. Here we focus on the neutrino mass su
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos.