ﻻ يوجد ملخص باللغة العربية
The chirality-induced spin selectivity (CISS) effect has been confirmed experimentally for a large class of organic molecules. Adequately modeling the effect remains a challenging task, with both phenomenological models and first-principle simulations yielding inconclusive results. Building upon a previously presented model by K. Michaeli and R. Naaman (J. Phys. Chem C 123, 17043 (2019)) we systematically investigate an effective 1-dimensional model derived as the limit of a 3-dimensional quantum system with strong confinement and including spin-orbit coupling. Having a simple analytic structure, such models can be considered a minimal setup for the description of spin-dependent effects. We use adiabatic perturbation theory to provide a mathematically sound approximation procedure applicable to a large class of spin-dependent continuum models. We take advantage of the models simplicity by analyzing its structure to gain a better understanding how the occurrence and magnitude of spin polarization effects relate to the models parameters and geometry.
Dispersion interactions are one of the components of van der Waals forces, which play a key role in the understanding of intermolecular interactions in many physical, chemical and biological processes. The theory of dispersion forces was developed by
We report a new type of spin-orbit coupling (SOC) called geometric SOC. Starting from the relativistic theory in curved space, we derive an effective nonrelativistic Hamiltonian in a generic curve embedded into flat three dimensions. The geometric SO
Chirality induced spin selectivity, discovered about two decades ago in helical molecules, is a non-equilibrium effect that emerges from the interplay between geometrical helicity and spin-orbit interactions. Several model Hamiltonians building on th
Here we propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer. The proposed mechanism explains how spin polarization emerges in systems where charge transpor
The theoretical explanation for the chiral-induced spin selectivity effect, in which electrons passage through a chiral system depends on their spin and the handedness of the system, remains vague. Although most experimental work was performed at roo