ﻻ يوجد ملخص باللغة العربية
The recent IceCube publication claims the observation of cosmic neutrinos with energies down to $sim 10$ TeV, reinforcing the growing evidence that the neutrino flux in the 10-100 TeV range is unexpectedly large. Any conceivable source of these neutrinos must also produce a $gamma$-ray flux which degrades in energy en route to the Earth and contributes to the extragalactic $gamma$-ray background measured by the Fermi satellite. In a quantitative multimessenger analysis, featuring minimalistic assumptions, we find a $geq 3sigma$ tension in the data, reaching $sim 5sigma$ for cosmic neutrinos extended down to $sim 1$ TeV, interpreted as evidence for a population of hidden cosmic-ray accelerators.
A short overview of neutrino electromagnetic properties with focus on existed experimental constraints and future prospects is presented. The related new effect in neutrino flavour and spin-flavour oscillations in the transversal matter currents is introduced.
Dark matter (DM) scattering and its subsequent capture in the Sun can boost the local relic density, leading to an enhanced neutrino flux from DM annihilations that is in principle detectable at neutrino telescopes. We calculate the event rates expec
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the recently released IceCube data on atmospheric neutrino f
Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear ($pp$) interactions,
The IceCube collaboration has recently announced the discovery of ultra-high energy neutrino events. These neutrinos can be used to probe their production source, as well as leptonic mixing parameters. In this work, we have used the first IceCube dat