ﻻ يوجد ملخص باللغة العربية
I discuss hadronic decays of $D$ mesons with emphasis on the recent discovery of charm CP violation in $D^0to K^+K^-,pi^+pi^-$ decays. The measured difference $Delta a_{CP} , equiv ; a_{CP}^{mathrm{dir}}(D^0rightarrow K^+K^-) - a_{CP}^{mathrm{dir}}(D^0rightarrowpi^+pi^-) = ; (-15.4pm 2.9)cdot 10^{-4}$ of two direct CP asymmetries exceeds the SM prediction by a factor of 7. A possible explanation is an enhancement of the penguin amplitude entering $ a_{CP}^{mathrm{dir}}$ by QCD effects which are not understood yet. Alternatively, $Delta a_{CP}$ could be dominated by contributions from new physics. In order to distinguish these two hypotheses further CP asymmetries should be measured. To this end CP asymmetries resulting from the interference of two tree-level amplitudes auch as $a_{CP}^{mathrm{dir}}(D^0rightarrow K_SK_S)$ or $a_{CP}^{mathrm{dir}}(D^0 to K^{*0} K_S)$ are especially interesting.
Proceedings of the CKM 2005 Workshop (WG5), UC San Diego, 15-18 March 2005.
We give arguments in favor of the compatibility with standard physics of some large nonleptonic branching fractions in Cabibbo--forbidden $D^+$ decays, contrary to a recent claim in the literature.
A global previous analysis of two-body nonleptonic decays of $D$ mesons has been extended to the decays involving light scalar mesons. The allowance for final state interaction also in nonresonant channels provides a fit of much improved quality and
Indirect searches, and in particular rare decays, have proven to be a fruitful field to search for New Physics beyond the Standard Model. While the down-quark sector (B and K) have been studied in detail, less attention was devoted to charm decays du
We investigate the possibility that scalar leptoquarks generate consequential effects on the flavor-changing neutral-current decays of charmed hadrons into final states with missing energy ($ ot!!E$) carried away by either standard model or sterile n