In recent years significant efforts have been made to design and fabricate functional nanomaterials for biomedical applications based on the control of light matter interaction at the nanometer scale. Among many other artificial materials, hyperbolic dispersion metamaterials allow to access unprecedented physical effects and mechanisms due to the extreme anisotropy of their optical constants. The unbound isofrequency surface of hyperbolic metamaterials (HMMs) enable the possibility to support a virtually infinite density of states and ultra-high confinement of electromagnetic fields, allowing perfect absorption of light and extreme sensing properties. Optical sensor technology based on plasmonic metamaterials offers significant opportunities in the field of clinical diagnostics, particularly for the detection of low-molecular-weight biomolecules in highly diluted solutions. In this context, we present a computational effort to engineer a biosensing platform based on hyperbolic metamaterials, supporting highly confined bulk plasmon modes integrated with out-of-plane chiral metasurfaces. The role of the helicoidal chiral metasurface is manifold: i) as a diffractive element to increase the momentum of the incoming light to excite the plasmon sensing modes with linearly and circularly polarized light; ii) as out-of-plane extended sensing surface to capture target analytes away from the substrate thereby the diffusion limit; iii) as a plamonic chiral nanostructure with enhanced sensing performance over circularly polarized reflectance light.