ترغب بنشر مسار تعليمي؟ اضغط هنا

Average-case Acceleration Through Spectral Density Estimation

52   0   0.0 ( 0 )
 نشر من قبل Fabian Pedregosa
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a framework for the average-case analysis of random quadratic problems and derive algorithms that are optimal under this analysis. This yields a new class of methods that achieve acceleration given a model of the Hessians eigenvalue distribution. We develop explicit algorithms for the uniform, Marchenko-Pastur, and exponential distributions. These methods are momentum-based algorithms, whose hyper-parameters can be estimated without knowledge of the Hessians smallest singular value, in contrast with classical accelerated methods like Nesterov acceleration and Polyak momentum. Through empirical benchmarks on quadratic and logistic regression problems, we identify regimes in which the the proposed methods improve over classical (worst-case) accelerated methods.



قيم البحث

اقرأ أيضاً

Advances in generative modeling and adversarial learning have given rise to renewed interest in smooth games. However, the absence of symmetry in the matrix of second derivatives poses challenges that are not present in the classical minimization fra mework. While a rich theory of average-case analysis has been developed for minimization problems, little is known in the context of smooth games. In this work we take a first step towards closing this gap by developing average-case optimal first-order methods for a subset of smooth games. We make the following three main contributions. First, we show that for zero-sum bilinear games the average-case optimal method is the optimal method for the minimization of the Hamiltonian. Second, we provide an explicit expression for the optimal method corresponding to normal matrices, potentially non-symmetric. Finally, we specialize it to matrices with eigenvalues located in a disk and show a provable speed-up compared to worst-case optimal algorithms. We illustrate our findings through benchmarks with a varying degree of mismatch with our assumptions.
Polyak momentum (PM), also known as the heavy-ball method, is a widely used optimization method that enjoys an asymptotic optimal worst-case complexity on quadratic objectives. However, its remarkable empirical success is not fully explained by this optimality, as the worst-case analysis -- contrary to the average-case -- is not representative of the expected complexity of an algorithm. In this work we establish a novel link between PM and the average-case analysis. Our main contribution is to prove that any optimal average-case method converges in the number of iterations to PM, under mild assumptions. This brings a new perspective on this classical method, showing that PM is asymptotically both worst-case and average-case optimal.
This monograph covers some recent advances on a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, momentum and nested optimization schemes, which coincide in the quadratic case to form the Chebyshev method whose complexity is analyzed using Chebyshev polynomials. We discuss momentum methods in detail, starting with the seminal work of Nesterov (1983) and structure convergence proofs using a few master templates, such as that of emph{optimized gradient methods} which have the key benefit of showing how momentum methods maximize convergence rates. We further cover proximal acceleration techniques, at the heart of the emph{Catalyst} and emph{Accelerated Hybrid Proximal Extragradient} frameworks, using similar algorithmic patterns. Common acceleration techniques directly rely on the knowledge of some regularity parameters of the problem at hand, and we conclude by discussing emph{restart} schemes, a set of simple techniques to reach nearly optimal convergence rates while adapting to unobserved regularity parameters.
The Regularized Nonlinear Acceleration (RNA) algorithm is an acceleration method capable of improving the rate of convergence of many optimization schemes such as gradient descend, SAGA or SVRG. Until now, its analysis is limited to convex problems, but empirical observations shows that RNA may be extended to wider settings. In this paper, we investigate further the benefits of RNA when applied to neural networks, in particular for the task of image recognition on CIFAR10 and ImageNet. With very few modifications of exiting frameworks, RNA improves slightly the optimization process of CNNs, after training.
300 - Zhishuai Guo , Yi Xu , Wotao Yin 2021
In this paper, we demonstrate the power of a widely used stochastic estimator based on moving average (SEMA) on a range of stochastic non-convex optimization problems, which only requires {bf a general unbiased stochastic oracle}. We analyze various stochastic methods (existing or newly proposed) based on the {bf variance recursion property} of SEMA for three families of non-convex optimization, namely standard stochastic non-convex minimization, stochastic non-convex strongly-concave min-max optimization, and stochastic bilevel optimization. Our contributions include: (i) for standard stochastic non-convex minimization, we present a simple and intuitive proof of convergence for a family Adam-style methods (including Adam) with an increasing or large momentum parameter for the first-order moment, which gives an alternative yet more natural way to guarantee Adam converge; (ii) for stochastic non-convex strongly-concave min-max optimization, we present a single-loop stochastic gradient descent ascent method based on the moving average estimators and establish its oracle complexity of $O(1/epsilon^4)$ without using a large mini-batch size, addressing a gap in the literature; (iii) for stochastic bilevel optimization, we present a single-loop stochastic method based on the moving average estimators and establish its oracle complexity of $widetilde O(1/epsilon^4)$ without computing the inverse or SVD of the Hessian matrix, improving state-of-the-art results. For all these problems, we also establish a variance diminishing result for the used stochastic gradient estimators.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا