ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixed-effects model: the most convincing model for meta-analysis with few studies

69   0   0.0 ( 0 )
 نشر من قبل Tiejun Tong
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

According to Davey et al. (2011) with a total of 22,453 meta-analyses from the January 2008 Issue of the Cochrane Database of Systematic Reviews, the median number of studies included in each meta-analysis is only three. In other words, about a half or more of meta-analyses conducted in the literature include only two or three studies. While the common-effect model (also referred to as the fixed-effect model) may lead to misleading results when the heterogeneity among studies is large, the conclusions based on the random-effects model may also be unreliable when the number of studies is small. Alternatively, the fixed-effects model avoids the restrictive assumption in the common-effect model and the need to estimate the between-study variance in the random-effects model. We note, however, that the fixed-effects model is under appreciated and rarely used in practice until recently. In this paper, we compare all three models and demonstrate the usefulness of the fixed-effects model when the number of studies is small. In addition, we propose a new estimator for the unweighted average effect in the fixed-effects model. Simulations and real examples are also used to illustrate the benefits of the fixed-effects model and the new estimator.



قيم البحث

اقرأ أيضاً

302 - Olha Bodnar , Taras Bodnar 2021
Objective Bayesian inference procedures are derived for the parameters of the multivariate random effects model generalized to elliptically contoured distributions. The posterior for the overall mean vector and the between-study covariance matrix is deduced by assigning two noninformative priors to the model parameter, namely the Berger and Bernardo reference prior and the Jeffreys prior, whose analytical expressions are obtained under weak distributional assumptions. It is shown that the only condition needed for the posterior to be proper is that the sample size is larger than the dimension of the data-generating model, independently of the class of elliptically contoured distributions used in the definition of the generalized multivariate random effects model. The theoretical findings of the paper are applied to real data consisting of ten studies about the effectiveness of hypertension treatment for reducing blood pressure where the treatment effects on both the systolic blood pressure and diastolic blood pressure are investigated.
In this paper, we propose a varying coefficient panel data model with unobservable multiple interactive fixed effects that are correlated with the regressors. We approximate each coefficient function by B-spline, and propose a robust nonlinear iterat ion scheme based on the least squares method to estimate the coefficient functions of interest. We also establish the asymptotic theory of the resulting estimators under certain regularity assumptions, including the consistency, the convergence rate and the asymptotic distribution. Furthermore, we develop a least squares dummy variable method to study an important special case of the proposed model: the varying coefficient panel data model with additive fixed effects. To construct the pointwise confidence intervals for the coefficient functions, a residual-based block bootstrap method is proposed to reduce the computational burden as well as to avoid the accumulative errors. Simulation studies and a real data analysis are also carried out to assess the performance of our proposed methods.
In meta-analyses, publication bias is a well-known, important and challenging issue because the validity of the results from a meta-analysis is threatened if the sample of studies retrieved for review is biased. One popular method to deal with public ation bias is the Copas selection model, which provides a flexible sensitivity analysis for correcting the estimates with considerable insight into the data suppression mechanism. However, rigorous testing procedures under the Copas selection model to detect bias are lacking. To fill this gap, we develop a score-based test for detecting publication bias under the Copas selection model. We reveal that the behavior of the standard score test statistic is irregular because the parameters of the Copas selection model disappear under the null hypothesis, leading to an identifiability problem. We propose a novel test statistic and derive its limiting distribution. A bootstrap procedure is provided to obtain the p-value of the test for practical applications. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test and apply the method to several existing meta-analyses.
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influ ential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
Network meta-analysis (NMA) allows the combination of direct and indirect evidence from a set of randomized clinical trials. Performing NMA using individual patient data (IPD) is considered as a gold standard approach as it provides several advantage s over NMA based on aggregate data. For example, it allows to perform advanced modelling of covariates or covariate-treatment interactions. An important issue in IPD NMA is the selection of influential parameters among terms that account for inconsistency, covariates, covariate-by-treatment interactions or non-proportionality of treatments effect for time to event data. This issue has not been deeply studied in the literature yet and in particular not for time-to-event data. A major difficulty is to jointly account for between-trial heterogeneity which could have a major influence on the selection process. The use of penalized generalized mixed effect model is a solution, but existing implementations have several shortcomings and an important computational cost that precludes their use for complex IPD NMA. In this article, we propose a penalized Poisson regression model to perform IPD NMA of time-to-event data. It is based only on fixed effect parameters which improve its computational cost over the use of random effects. It could be easily implemented using existing penalized regression package. Computer code is shared for implementation. The methods were applied on simulated data to illustrate the importance to take into account between trial heterogeneity during the selection procedure. Finally, it was applied to an IPD NMA of overall survival of chemotherapy and radiotherapy in nasopharyngeal carcinoma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا