ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Dirac Nodes and Symmetry Protected Dirac Nodal Line in Orthorhombic $alpha$-RhSi

237   0   0.0 ( 0 )
 نشر من قبل Shirin Mozaffari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Owing to their chiral cubic structure, exotic multifold topological excitations have been predicted and recently observed in transition metal silicides like $beta$-RhSi. Herein, we report that the topological character of RhSi is also observed in its orthorhombic $alpha$-phase which displays multiple types of Dirac nodes very close to the Fermi level ($varepsilon_F$) with the near absence of topologically trivial carriers. We discuss the symmetry analysis, band connectivity along high-symmetry lines using group representations, the band structure, and the nature of the Dirac points and nodal lines occurring near $varepsilon_F$. The de Haas-van Alphen effect (dHvA) indicates a Fermi surface in agreement with the calculations. We find an elliptically-shaped nodal line very close to $varepsilon_F$ around and near the $S$-point on the $k_y-k_z$ plane that results from the intersection of two upside-down Dirac cones. The two Dirac points of the participating Kramers degenerate bands are only 5 meV apart, hence an accessible magnetic field might induce a crossing between the spin-up partner of the upper-Dirac cone and the spin-down partner of the lower Dirac cone, possibly explaining the anomalies observed in the magnetic torque.



قيم البحث

اقرأ أيضاً

Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo rt properties invite studies of relativistic physics in the solid state where their linearly dispersing Dirac bands cross at continuous lines with four-fold degeneracy. In materials studied up to now, the four-fold degeneracy, however, has been vulnerable to suppression by the ubiquitous spin-orbit coupling (SOC). Despite the current effort to discover 3D DNLSs that are robust to SOC by theory, positive experimental evidence is yet to emerge. In 2D DNLSs, because of the decreased total density of states as compared with their 3D counterparts, it is anticipated that their physical properties would be dominated by the electronic states defined by the DNL. It has been even more challenging, however, to discover robust 2D DNLSs against SOC because of their lowered symmetry; no such materials have yet been predicted by theory. By combining molecular beam epitaxy growth, STM, nc-AFM characterisation, with DFT calculations and space group theory analysis, here we reveal a novel class of 2D crystalline DNLSs that host the exact symmetry that protects them against SOC. The discovered quantum material is a brick phase 3-AL Bi(110), whose symmetry protection and thermal stability are imparted by the compressive vdW epitaxial growth on black phosphorus substrates. The BP substrate templates the growth of 3-AL Bi(110) nano-islands in a non-symmorphic space group structure. This crystalline symmetry protects the DNL electronic phase against SOC independent of any orbital or elemental factors. We theoretically establish that this intrinsic symmetry imparts a general, robust protection of DNL in a series of isostructural 2D quantum materials.
Nodal-line semimetals (NLSMs) contains Dirac/Weyl type band-crossing nodes extending into shapes of line, loop and chain in the reciprocal space, leading to novel band topology and transport responses. Robust NLSMs against spin-orbit coupling typical ly occur in three-dimensional materials with more symmetry operations to protect the line nodes of band crossing, while the possibilities in lower-dimensional materials are rarely discussed. Here we demonstrate robust NLSM phase in a quasi-one-dimensional nonmagnetic semimetal TaNiTe5. Combining angle-resolved photoemission spectroscopy measurements and first-principles calculations, we reveal how reduced dimension can interact with nonsymmorphic symmetry and result into multiple Dirac-type nodal lines with four-fold degeneracy. Our findings suggest rich physics and application in (quasi-)one-dimensional topological materials and call for further investigation on the interplay between the quantum confinement and nontrivial band topology.
382 - Jian Liu , D. Kriegner , L. Horak 2015
By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 ca n be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the Pbnm mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n-glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.
One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds dis play Dirac nodal lines (DNL) close to the Fermi level $varepsilon_F$ at symmorphic and non-symmorphic positions, respectively. We find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe displays low residual resistivities, pronounced magnetoresistivity, high carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity (AMR), although its DNL is not protected against gap opening. As in Cd$_3$As$_2$, its transport lifetime is found to be 10$^2$ to 10$^3$ times larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays conventional transport properties. Our evaluation indicates that both compounds most likely are topologically trivial. Nearly angle-independent effective masses with strong angle dependent quantum lifetimes lead to the butterfly AMR in ZrSiSe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا