ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity without insulating states in twisted bilayer graphene stabilized by monolayer WSe$_2$

115   0   0.0 ( 0 )
 نشر من قبل Stevan Nadj-Perge
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1$^circ$, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic, and topological phases. The origins of the correlated insulators and superconductivity, and the interplay between them, are particularly elusive. Both states have been previously observed only for angles within $pm0.1^circ$ from the magic-angle value and occur in adjacent or overlapping electron density ranges; nevertheless, it is still unclear how the two states are related. Beyond the twist angle and strain, the dependence of the TBG phase diagram on the alignment and thickness of insulating hexagonal boron nitride (hBN) used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten-diselenide (WSe$_2$) monolayer between hBN and TBG stabilizes superconductivity at twist angles much smaller than the established magic-angle value. For the smallest angle of $theta$ = 0.79$^circ$, we still observe clear superconducting signatures, despite the complete absence of the correlated insulating states and vanishing gaps between the dispersive and flat bands. These observations demonstrate that, even though electron correlations may be important, superconductivity in TBG can exist even when TBG exhibits metallic behaviour across the whole range of electron density. Finite-magnetic-field measurements further reveal breaking of the four-fold spin-valley symmetry in the system, consistent with large spin-orbit coupling induced in TBG via proximity to WSe$_2$. Our results highlight the importance of symmetry breaking effects in stabilizing electronic states in TBG and open new avenues for engineering quantum phases in moire systems.



قيم البحث

اقرأ أيضاً

Magic-angle twisted trilayer graphene (MATTG) recently emerged as a highly tunable platform for studying correlated phases of matter, such as correlated insulators and superconductivity. Superconductivity occurs in a range of doping levels that is bo unded by van Hove singularities which stimulates the debate of the origin and nature of superconductivity in this material. In this work, we discuss the role of spin-fluctuations arising from atomic-scale correlations in MATTG for the superconducting state. We show that in a phase diagram as function of doping ($ u$) and temperature, nematic superconducting regions are surrounded by ferromagnetic states and that a superconducting dome with $T_c approx 2,mathrm{K}$ appears between the integer fillings $ u =-2$ and $ u = -3$. Applying a perpendicular electric field enhances superconductivity on the electron-doped side which we relate to changes in the spin-fluctuation spectrum. We show that the nematic unconventional superconductivity leads to pronounced signatures in the local density of states detectable by scanning tunneling spectroscopy measurements.
We develop a theory for a qualitatively new type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat band moire super lattice. The new paradigm of twist angle disorder arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable non-uniformity of the twist angle across the sample. To address this new physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.
The recently observed superconductivity in twisted bilayer graphene emerges from insulating states believed to arise from electronic correlations. While there have been many proposals to explain the insulating behaviour, the commensurability at which these states appear suggests that they are Mott insulators. Here we focus on the insulating states with $pm 2$ electrons or holes with respect to the charge neutrality point. We show that the theoretical expectations for the Mott insulating states are not compatible with the experimentally observed dependence on temperature and magnetic field if, as frequently assumed, only the correlations between electrons on the same site are included. We argue that the inclusion of non-local (inter-site) correlations in the treatment of the Hubbard model can bring the predictions for the magnetic and temperature dependencies of the Mott transition to an agreement with experiments and have consequences for the critical interactions, the size of the gap, and possible pseudogap physics. The importance of the inter-site correlations to explain the experimental observations indicates that the observed insulating gap is not the one between the Hubbard bands and that antiferromagnetic-like correlations play a key role in the Mott transition.
Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer graphene (MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram, driven partly by the strong interactions relative to the electronic bandwidth, its single-particle properties are unique and likely play an important role in some of the phenomenological complexity. Some of the salient features include an electronic bandwidth smaller than the characteristic phonon bandwidth and a non-trivial structure of the underlying Bloch wavefunctions. We perform a theoretical study of the cooperative effects due to phonons and plasmons on pairing in order to disentangle the distinct role played by these modes on superconductivity. We consider a variant of MATBG with an enlarged number of fermion flavors, $N gg 1$, where the study of pairing instabilities reduces to the conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp processes involving mini-optical phonon modes, which arise physically as a result of the folding of the original acoustic branch of graphene due to the moire superlattice structure, contribute significantly towards enhancing pairing. We also investigate the role played by the dynamics of the screened Coulomb interaction on pairing, which leads to an enhancement in a narrow window of fillings, and study the effect of external screening due to a metallic gate on superconductivity. At strong coupling the dynamical pairing interaction leaves a spectral mark in the single particle tunneling density of states. We thus predict such features will appear at specific frequencies of the umklapp phonons corresponding to the sound velocity of graphene times an integer multiple of the Brillouin zone size.
Flat band moire superlattices have recently emerged as unique platforms for investigating the interplay between strong electronic correlations, nontrivial band topology, and multiple isospin flavor symmetries. Twisted monolayer-bilayer graphene (tMBG ) is an especially rich system owing to its low crystal symmetry and the tunability of its bandwidth and topology with an external electric field. Here, we find that orbital magnetism is abundant within the correlated phase diagram of tMBG, giving rise to the anomalous Hall effect (AHE) in correlated metallic states nearby most odd integer fillings of the flat conduction band, as well as correlated Chern insulator states stabilized in an external magnetic field. The behavior of the states at zero field appears to be inconsistent with simple spin and valley polarization for the specific range of twist angles we investigate, and instead may plausibly result from an intervalley coherent (IVC) state with an order parameter that breaks time reversal symmetry. The application of a magnetic field further tunes the competition between correlated states, in some cases driving first-order topological phase transitions. Our results underscore the rich interplay between closely competing correlated ground states in tMBG, with possible implications for probing exotic IVC ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا