ﻻ يوجد ملخص باللغة العربية
The monster sporadic group is the automorphism group of a central charge $c=24$ vertex operator algebra (VOA) or meromorphic conformal field theory (CFT). In addition to its $c=24$ stress tensor $T(z)$, this theory contains many other conformal vectors of smaller central charge; for example, it admits $48$ commuting $c=frac12$ conformal vectors whose sum is $T(z)$. Such decompositions of the stress tensor allow one to construct new CFTs from the monster CFT in a manner analogous to the Goddard-Kent-Olive (GKO) coset method for affine Lie algebras. We use this procedure to produce evidence for the existence of a number of CFTs with sporadic symmetry groups and employ a variety of techniques, including Hecke operators, modular linear differential equations, and Rademacher sums, to compute the characters of these CFTs. Our examples include (extensions of) nine of the sporadic groups appearing as subquotients of the monster, as well as the simple groups ${}^2{E}_6(2)$ and ${F}_4(2)$ of Lie type. Many of these examples are naturally associated to McKays $widehat{E_8}$ correspondence, and we use the structure of Nortons monstralizer pairs more generally to organize our presentation.
The correlators of free four dimensional conformal field theories (CFT4) have been shown to be given by amplitudes in two-dimensional $so(4,2)$ equivariant topological field theories (TFT2), by using a vertex operator formalism for the correlators. W
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1
In this paper we deploy for the first time Reinforcement-Learning algorithms in the context of the conformal-bootstrap programme to obtain numerical solutions of conformal field theories (CFTs). As an illustration, we use a soft Actor-Critic algorith
We propose using smeared boundary states $e^{-tau H}|cal Brangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and o
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a