ترغب بنشر مسار تعليمي؟ اضغط هنا

Commensurated subgroups and micro-supported actions

122   0   0.0 ( 0 )
 نشر من قبل Adrien Le Boudec
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Gamma$ be a finitely generated group and $X$ be a minimal compact $Gamma$-space. We assume that the $Gamma$-action is micro-supported, i.e. for every non-empty open subset $U subseteq X$, there is an element of $Gamma$ acting non-trivially on $U$ and trivially on the complement $X setminus U$. We show that, under suitable assumptions, the existence of certain commensurated subgroups in $Gamma$ yields strong restrictions on the dynamics of the $Gamma$-action: the space $X$ has compressible open subsets, and it is an almost $Gamma$-boundary. Those properties yield in turn restrictions on the structure of $Gamma$: $Gamma$ is neither amenable nor residually finite. Among the applications, we show that the (alternating subgroup of the) topological full group associated to a minimal and expansive Cantor action of a finitely generated amenable group has no commensurated subgroups other than the trivial ones. Similarly, every commensurated subgroup of a finitely generated branch group is commensurate to a normal subgroup; the latter assertion relies on an appendix by Dominik Francoeur, and generalizes a result of Phillip Wesolek on finitely generated just-infinite branch groups. Other applications concern discrete groups acting on the circle, and the centralizer lattice of non-discrete totally disconnected locally compact (tdlc) groups. Our results rely, in an essential way, on recent results on the structure of tdlc groups, on the dynamics of their micro-supported actions, and on the notion of uniformly recurrent subgroups.



قيم البحث

اقرأ أيضاً

The residual closure of a subgroup $H$ of a group $G$ is the intersection of all virtually normal subgroups of $G$ containing $H$. We show that if $G$ is generated by finitely many cosets of $H$ and if $H$ is commensurated, then the residual closure of $H$ in $G$ is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.
129 - Michael Handel , Lee Mosher 2015
In this two part work we prove that for every finitely generated subgroup $Gamma < text{Out}(F_n)$, either $Gamma$ is virtually abelian or $H^2_b(Gamma;mathbb{R})$ contains an embedding of $ell^1$. The method uses actions on hyperbolic spaces, for pu rposes of constructing quasimorphisms. Here in Part I, after presenting the general theory, we focus on the case of infinite lamination subgroups $Gamma$ - those for which the set of all attracting laminations of all elements of $Gamma$ is infinite - using actions on free splitting complexes of free groups.
This is the second part of a two part work in which we prove that for every finitely generated subgroup $Gamma < mathsf{Out}(F_n)$, either $Gamma$ is virtually abelian or its second bounded cohomology $H^2_b(Gamma;mathbb{R})$ contains an embedding of $ell^1$. Here in Part II we focus on finite lamination subgroups $Gamma$ --- meaning that the set of all attracting laminations of elements of $Gamma$ is finite --- and on the construction of hyperbolic actions of those subgroups to which the general theory of Part I is applicable.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wre ath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.
In this monograph, we give an account of the relationship between the algebraic structure of finitely generated and countable groups and the regularity with which they act on manifolds. We concentrate on the case of one--dimensional manifolds, culmin ating with a uniform construction of finitely generated groups acting with prescribed regularity on the compact interval and on the circle. We develop the theory of dynamical obstructions to smoothness, beginning with classical results of Denjoy, to more recent results of Kopell, and to modern results such as the $abt$--Lemma. We give a classification of the right-angled Artin groups that have finite critical regularity and discuss their exact critical regularities in many cases, and we compute the virtual critical regularity of most mapping class groups of orientable surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا