ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling ASR Ambiguity for Dialogue State Tracking Using Word Confusion Networks

68   0   0.0 ( 0 )
 نشر من قبل Vaishali Pal
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spoken dialogue systems typically use a list of top-N ASR hypotheses for inferring the semantic meaning and tracking the state of the dialogue. However ASR graphs, such as confusion networks (confnets), provide a compact representation of a richer hypothesis space than a top-N ASR list. In this paper, we study the benefits of using confusion networks with a state-of-the-art neural dialogue state tracker (DST). We encode the 2-dimensional confnet into a 1-dimensional sequence of embeddings using an attentional confusion network encoder which can be used with any DST system. Our confnet encoder is plugged into the state-of-the-art Global-locally Self-Attentive Dialogue State Tacker (GLAD) model for DST and obtains significant improvements in both accuracy and inference time compared to using top-N ASR hypotheses.



قيم البحث

اقرأ أيضاً

97 - Chen Liu , Su Zhu , Zijian Zhao 2020
Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issu e, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.
The quality of automatic speech recognition (ASR) is critical to Dialogue Systems as ASR errors propagate to and directly impact downstream tasks such as language understanding (LU). In this paper, we propose multi-task neural approaches to perform c ontextual language correction on ASR outputs jointly with LU to improve the performance of both tasks simultaneously. To measure the effectiveness of this approach we used a public benchmark, the 2nd Dialogue State Tracking (DSTC2) corpus. As a baseline approach, we trained task-specific Statistical Language Models (SLM) and fine-tuned state-of-the-art Generalized Pre-training (GPT) Language Model to re-rank the n-best ASR hypotheses, followed by a model to identify the dialog act and slots. i) We further trained ranker models using GPT and Hierarchical CNN-RNN models with discriminatory losses to detect the best output given n-best hypotheses. We extended these ranker models to first select the best ASR output and then identify the dialogue act and slots in an end to end fashion. ii) We also proposed a novel joint ASR error correction and LU model, a word confusion pointer network (WCN-Ptr) with multi-head self-attention on top, which consumes the word confusions populated from the n-best. We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
Dialogue State Tracking (DST) forms a core component of automated chatbot based systems designed for specific goals like hotel, taxi reservation, tourist information, etc. With the increasing need to deploy such systems in new domains, solving the pr oblem of zero/few-shot DST has become necessary. There has been a rising trend for learning to transfer knowledge from resource-rich domains to unknown domains with minimal need for additional data. In this work, we explore the merits of meta-learning algorithms for this transfer and hence, propose a meta-learner D-REPTILE specific to the DST problem. With extensive experimentation, we provide clear evidence of benefits over conventional approaches across different domains, methods, base models, and datasets with significant (5-25%) improvement over the baseline in a low-data setting. Our proposed meta-learner is agnostic of the underlying model and hence any existing state-of-the-art DST system can improve its performance on unknown domains using our training strategy.
113 - Su Zhu , Jieyu Li , Lu Chen 2020
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. T o encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can obtain new state-of-the-art performance of the open-vocabulary DST on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.
Dialogue state tracking (DST) is a pivotal component in task-oriented dialogue systems. While it is relatively easy for a DST model to capture belief states in short conversations, the task of DST becomes more challenging as the length of a dialogue increases due to the injection of more distracting contexts. In this paper, we aim to improve the overall performance of DST with a special focus on handling longer dialogues. We tackle this problem from three perspectives: 1) A model designed to enable hierarchical slot status prediction; 2) Balanced training procedure for generic and task-specific language understanding; 3) Data perturbation which enhances the models ability in handling longer conversations. We conduct experiments on the MultiWOZ benchmark, and demonstrate the effectiveness of each component via a set of ablation tests, especially on longer conversations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا