ﻻ يوجد ملخص باللغة العربية
We present a novel approach to perform the unsupervised domain adaptation for object detection through forward-backward cyclic (FBC) training. Recent adversarial training based domain adaptation methods have shown their effectiveness on minimizing domain discrepancy via marginal feature distributions alignment. However, aligning the marginal feature distributions does not guarantee the alignment of class conditional distributions. This limitation is more evident when adapting object detectors as the domain discrepancy is larger compared to the image classification task, e.g. various number of objects exist in one image and the majority of content in an image is the background. This motivates us to learn domain invariance for category level semantics via gradient alignment. Intuitively, if the gradients of two domains point in similar directions, then the learning of one domain can improve that of another domain. To achieve gradient alignment, we propose Forward-Backward Cyclic Adaptation, which iteratively computes adaptation from source to target via backward hopping and from target to source via forward passing. In addition, we align low-level features for adapting holistic color/texture via adversarial training. However, the detector performs well on both domains is not ideal for target domain. As such, in each cycle, domain diversity is enforced by maximum entropy regularization on the source domain to penalize confident source-specific learning and minimum entropy regularization on target domain to intrigue target-specific learning. Theoretical analysis of the training process is provided, and extensive experiments on challenging cross-domain object detection datasets have shown the superiority of our approach over the state-of-the-art.
Unsupervised domain adaptive object detection aims to adapt detectors from a labelled source domain to an unlabelled target domain. Most existing works take a two-stage strategy that first generates region proposals and then detects objects of intere
This work tackles the unsupervised cross-domain object detection problem which aims to generalize a pre-trained object detector to a new target domain without labels. We propose an uncertainty-aware model adaptation method, which is based on two moti
Self-driving cars must detect other vehicles and pedestrians in 3D to plan safe routes and avoid collisions. State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasie
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds. First, we pre-train the 3D detector on the source domain with our proposed random object scaling strateg
In real applications, object detectors based on deep networks still face challenges of the large domain gap between the labeled training data and unlabeled testing data. To reduce the gap, recent techniques are proposed by aligning the image/instance