ﻻ يوجد ملخص باللغة العربية
We study the topological properties of Bose-Mott insulators in one-dimensional non-Hermitian superlattices, which may serve as effective Hamiltonians for cold atomic optical systems with either two-body loss or one-body loss. We find that in the strongly repulsive limit, the Mott insulator states of the Bose-Hubbard model with a finite two-body loss under integer fillings are topological insulators characterized by a finite charge gap, nonzero integer Chern numbers, and nontrivial edge modes in a low-energy excitation spectrum under an open boundary condition. The two-body loss suppressed by the strong repulsion results in a stable topological Bose-Mott insulator which has shares features similar to the Hermitian case. However, for the non-Hermitian model related to the one-body loss, we find the non-Hermitian topological Mott insulators are unstable with a finite imaginary excitation gap. Finally, we also discuss the stability of the Mott phase in the presence of two-body loss by solving the Lindblad master equation.
We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopp
Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wavefunctions are more delocal
Employing the density-matrix renormalization group technique in the matrix-product-state representation, we investigate the photoexcited superconducting correlations induced by the $eta$-pairing mechanism in the half-filled Hubbard chain. We estimate
The Mott insulating state formed from bosons is ubiquitous in solid He-4, cold atom systems, Josephson junction networks and perhaps underdoped high-Tc superconductors. We predict that close to the quantum phase transition to the superconducting stat
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies u