ﻻ يوجد ملخص باللغة العربية
Massive neutrinos influence the background evolution of the Universe as well as the growth of structure. Being able to model this effect and constrain the sum of their masses is one of the key challenges in modern cosmology. Weak-lensing cosmological constraints will also soon reach higher levels of precision with next-generation surveys like LSST, WFIRST and Euclid. We use the MassiveNus simulations to derive constraints on the sum of neutrino masses $M_{ u}$, the present-day total matter density $Omega_{rm m}$, and the primordial power spectrum normalization $A_{rm s}$ in a tomographic setting. We measure the lensing power spectrum as second-order statistics along with peak counts as higher-order statistics on lensing convergence maps generated from the simulations. We investigate the impact of multiscale filtering approaches on cosmological parameters by employing a starlet (wavelet) filter and a concatenation of Gaussian filters. In both cases peak counts perform better than the power spectrum on the set of parameters [$M_{ u}$, $Omega_{rm m}$, $A_{rm s}$] respectively by 63$%$, 40$%$ and 72$%$ when using a starlet filter and by 70$%$, 40$%$ and 77$%$ when using a multiscale Gaussian. More importantly, we show that when using a multiscale approach, joining power spectrum and peaks does not add any relevant information over considering just the peaks alone. While both multiscale filters behave similarly, we find that with the starlet filter the majority of the information in the data covariance matrix is encoded in the diagonal elements; this can be an advantage when inverting the matrix, speeding up the numerical implementation.
We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constra
The statistics of peaks in weak lensing convergence maps is a promising tool to investigate both the properties of dark matter haloes and constrain the cosmological parameters. We study how the number of detectable peaks and its scaling with redshift
We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effe
We develop and apply an analytic method to predict peak counts in weak-lensing surveys. It is based on the theory of Gaussian random fields and suitable to quantify the level of spurious detections caused by chance projections of large-scale structur
Upcoming surveys such as LSST{} and Euclid{} will significantly improve the power of weak lensing as a cosmological probe. To maximise the information that can be extracted from these surveys, it is important to explore novel statistics that compleme