ﻻ يوجد ملخص باللغة العربية
We examine the stacked thermal Sunyaev-Zeltext{}dovich (SZ) signals for a sample of galaxy cluster candidates from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey, which are identified in combined optical and infrared SHELA data using the redMaPPer algorithm. We separate the clusters into three richness bins, with average photometric redshifts ranging from 0.70 to 0.80. The richest bin shows a clear temperature decrement at 148 GHz in the Atacama Cosmology Telescope data, which we attribute to the SZ effect. All richness bins show an increment at 220 GHz, which we attribute to dust emission from cluster galaxies. We correct for dust emission using stacked profiles from Herschel Stripe 82 data, and allow for synchrotron emission using stacked profiles created by binning source fluxes from NVSS data. We see dust emission in all three richness bins, but can only confidently detect the SZ decrement in the highest richness bin, finding $M_{500}$ = $8.7^{+1.7}_{-1.3} times 10^{13} M_odot$. Neglecting the correction for dust depresses the inferred mass by 26 percent, indicating a partial fill-in of the SZ decrement from thermal dust and synchrotron emission by the cluster member galaxies. We compare our corrected SZ masses to two redMaPPer mass--richness scaling relations and find that the SZ mass is lower than predicted by the richness. We discuss possible explanations for this discrepancy, and note that the SHELA richnesses may differ from previous richness measurements due to the inclusion of IR data in redMaPPer.
The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACTs first results. Data have been analyzed using a maximum-likelihood
We report on twenty-three clusters detected blindly as Sunyaev-Zeldovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in
We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zeldovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps, coupled with multi-
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zeldovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq.
We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities sp