ﻻ يوجد ملخص باللغة العربية
We present SciServer, a science platform built and supported by the Institute for Data Intensive Engineering and Science at the Johns Hopkins University. SciServer builds upon and extends the SkyServer system of server-side tools that introduced the astronomical community to SQL (Structured Query Language) and has been serving the Sloan Digital Sky Survey catalog data to the public. SciServer uses a Docker/VM based architecture to provide interactive and batch mode server-side analysis with scripting languages like Python and R in various environments including Jupyter (notebooks), RStudio and command-line in addition to traditional SQL-based data analysis. Users have access to private file storage as well as personal SQL database space. A flexible resource access control system allows users to share their resources with collaborators, a feature that has also been very useful in classroom environments. All these services, wrapped in a layer of REST APIs, constitute a scalable collaborative data-driven science platform that is attractive to science disciplines beyond astronomy.
Virtual Observatory (VO) is a data-intensively online astronomical research and education environment, which takes advantages of advanced information technologies to achieve seamless and global access to astronomical information. AstroCloud is a cybe
Hundreds of thousands of astronomy education activities exist, but their discoverability and quality is highly variable. The web platform for astronomy education activities, astroEDU, presented in this paper tries to solve these issues. Using the fam
MASER (Measurements, Analysis, and Simulation of Emission in the Radio range) is a comprehensive infrastructure dedicated to time-dependent low frequency radio astronomy (up to about 50 MHz). The main radio sources observed in this spectral range are
A coming resurgence of super heavy-lift launch vehicles has precipitated an immense interest in the future of crewed spaceflight and even future colonisation efforts. While it is true that a bright future awaits this sector, driven by commercial vent
With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier