ﻻ يوجد ملخص باللغة العربية
New optical technologies offer the ability to reconfigure network topologies dynamically, rather than setting them once and for all. This is true in both optical wide area networks (optical WANs) and in datacenters, despite the many differences between these two settings. Because of these new technologies, there has been a surge of both practical and theoretical research on algorithms to take advantage of them. In particular, Jia et al. [INFOCOM 17] designed online scheduling algorithms for dynamically reconfigurable topologies for both the makespan and sum of completion times objectives. In this paper, we work in the same setting but study an objective that is more meaningful in an online setting: the sum of flow times. The flow time of a job is the total amount of time that it spends in the system, which may be considerably smaller than its completion time if it is released late. We provide competitive algorithms for the online setting with speed augmentation, and also give a lower bound proving that speed augmentation is in fact necessary. As a side effect of our techniques, we also improve and generalize the results of Jia et al. on completion times by giving an $O(1)$-competitive algorithm for arbitrary sizes and release times even when nodes have different degree bounds, and moreover allow for the weighted sum of completion times (or flow times).
We discuss one of the most fundamental scheduling problem of processing jobs on a single machine to minimize the weighted flow time (weighted response time). Our main result is a $O(log P)$-competitive algorithm, where $P$ is the maximum-to-minimum p
We propose a method for reconfiguring a relay node for polarization encoded quantum key distribution (QKD) networks. The relay can be switched between trusted and untrusted modes to adapt to different network conditions, relay distances, and security
We give a 1.488-approximation for the classic scheduling problem of minimizing total weighted completion time on unrelated machines. This is a considerable improvement on the recent breakthrough of $(1.5 - 10^{-7})$-approximation (STOC 2016, Bansal-S
Inter-datacenter networks connect dozens of geographically dispersed datacenters and carry traffic flows with highly variable sizes and different classes. Adaptive flow routing can improve efficiency and performance by assigning paths to new flows ac
Modern networks run middleboxes that offer services ranging from network address translation and server load balancing to firewalls, encryption, and compression. In an industry trend known as Network Functions Virtualization (NFV), these middleboxes