We investigate modifications of quantum mechanics (QM) that replace the unitary group in a finite dimensional Hilbert space with a finite group and determine the minimal sequence of subgroups necessary to approximate QM arbitrarily closely for general choices of Hamiltonian. This mathematical study reveals novel insights about t Hoofts Ontological Quantum Mechanics, and the derivation of statistical mechanics from quantum mechanics. We show that Kornyaks proposal to understand QM as classical dynamics on a Hilbert space of one dimension higher than that describing the universe, supplemented by a choice of the value of a naturally conserved quantum operator in that classical evolution can probably be a model of the world we observe.