Bound states in ultrastrong waveguide QED


الملخص بالإنكليزية

We discuss the properties of bound states in finite-bandwidth waveguide QED beyond the Rotating Wave Approximation or excitation number conserving light-matter coupling models. Therefore, we extend the emph{standard} calculations to a broader range of light-matter strengths, in particular, in the so-called ultrastrong coupling regime. We do this using the Polaron technique. Our main results are as follows. We compute the spontaneous emission rate, which is renormalized as compared to the Fermi Golden Rule formula. We generalise the existence criteria for bound states, their properties and their role in the qubits thermalization. We discuss effective spin-spin interactions through both vacuum fluctuations and bound states. Finally, we sketch a perfect state-transfer protocol among distant emitters.

تحميل البحث