ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost Hermitian Ricci flow

159   0   0.0 ( 0 )
 نشر من قبل Casey Kelleher
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new curvature flow which matches with the Ricci flow on metrics and preserves the almost Hermitian condition. This enables us to use Ricci flow to study almost Hermitian manifolds.



قيم البحث

اقرأ أيضاً

We generalize most of the known Ricci flow invariant non-negative curvature conditions to less restrictive negative bounds that remain sufficiently controlled for a short time. As an illustration of the contents of the paper, we prove that metrics whose curvature operator has eigenvalues greater than $-1$ can be evolved by the Ricci flow for some uniform time such that the eigenvalues of the curvature operator remain greater than $-C$. Here the time of existence and the constant $C$ only depend on the dimension and the degree of non-collapsedness. We obtain similar generalizations for other invariant curvature conditions, including positive biholomorphic curvature in the Kaehler case. We also get a local version of the main theorem. As an application of our almost preservation results we deduce a variety of gap and smoothing results of independent interest, including a classification for non-collapsed manifolds with almost non-negative curvature operator and a smoothing result for singular spaces coming from sequences of manifolds with lower curvature bounds. We also obtain a short-time existence result for the Ricci flow on open manifolds with almost non-negative curvature (without requiring upper curvature bounds).
266 - Pengshuai Shi 2013
In this paper, we study the singularities of two extended Ricci flow systems --- connection Ricci flow and Ricci harmonic flow using newly-defined curvature quantities. Specifically, we give the definition of three types of singularities and their co rresponding singularity models, and then prove the convergence. In addition, for Ricci harmonic flow, we use the monotonicity of functional $ u_alpha$ to show the connection between finite-time singularity and shrinking Ricci harmonic soliton. At last, we explore the property of ancient solutions for Ricci harmonic flow.
105 - Kai Tang 2021
Motivated by the recent work of Chu-Lee-Tam on the nefness of canonical line bundle for compact K{a}hler manifolds with nonpositive $k$-Ricci curvature, we consider a natural notion of {em almost nonpositive $k$-Ricci curvature}, which is weaker than the existence of a K{a}hler metric with nonpositive $k$-Ricci curvature. When $k=1$, this is just the {em almost nonpositive holomorphic sectional curvature} introduced by Zhang. We firstly give a lower bound for the existence time of the twisted K{a}hler-Ricci flow when there exists a K{a}hler metric with $k$-Ricci curvature bounded from above by a positive constant. As an application, we prove that a compact K{a}hler manifold of almost nonpositive $k$-Ricci curvature must have nef canonical line bundle.
We construct a discrete form of Hamiltons Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einsteins theory of general relativity known as Regge calculus. A Regge-Ricci flow (RRF) equation is naturally associated to each edge, L, of a simplicial lattice. In defining this equation, we find it convenient to utilize both the simplicial lattice, S, and its circumcentric dual lattice, S*. In particular, the RRF equation associated to L is naturally defined on a d-dimensional hybrid block connecting $ell$ with its (d-1)-dimensional circumcentric dual cell, L*. We show that this equation is expressed as the proportionality between (1) the simplicial Ricci tensor, Rc_L, associated with the edge L in S, and (2) a certain volume weighted average of the fractional rate of change of the edges, lambda in L*, of the circumcentric dual lattice, S*, that are in the dual of L. The inherent orthogonality between elements of S and their duals in S* provide a simple geometric representation of Hamiltons RF equations. In this paper we utilize the well established theories of Regge calculus, or equivalently discrete exterior calculus, to construct these equations. We solve these equations for a few illustrative examples.
This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and Kahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as `canonical metrics in generalized Riemannian and complex geometry. The generalized Ricci flow is introduced as a tool for constructing such metrics, and extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow are proved. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized Kahler-Ricci flow. This leads to global convergence results, and applications to complex geometry. A purely mathematical introduction to the physical idea of T-duality is given, and a discussion of its relationship to generalized Ricci flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا