ترغب بنشر مسار تعليمي؟ اضغط هنا

Information geometry of scaling expansions of non-exponentially growing configuration spaces

65   0   0.0 ( 0 )
 نشر من قبل Jan Korbel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many stochastic complex systems are characterized by the fact that their configuration space doesnt grow exponentially as a function of the degrees of freedom. The use of scaling expansions is a natural way to measure the asymptotic growth of the configuration space volume in terms of the scaling exponents of the system. These scaling exponents can, in turn, be used to define universality classes that uniquely determine the statistics of a system. Every system belongs to one of these classes. Here we derive the information geometry of scaling expansions of sample spaces. In particular, we present the deformed logarithms and the metric in a systematic and coherent way. We observe a phase transition for the curvature. The phase transition can be well measured by the characteristic length r, corresponding to a ball with radius 2r having the same curvature as the statistical manifold. Increasing characteristic length with respect to the size of the system is associated with sub-exponential sample space growth is associated with strongly constrained and correlated complex systems. Decreasing of the characteristic length corresponds to super-exponential sample space growth that occurs for example in systems that develop structure as they evolve. Constant curvature means exponential sample space growth that is associated with multinomial statistics, and traditional Boltzmann-Gibbs, or Shannon statistics applies. This allows us to characterize transitions between statistical manifolds corresponding to different families of probability distributions.



قيم البحث

اقرأ أيضاً

Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever availa ble, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.
We propose a new perspective on Turbulence using Information Theory. We compute the entropy rate of a turbulent velocity signal and we particularly focus on its dependence on the scale. We first report how the entropy rate is able to describe the dis tribution of information amongst scales, and how one can use it to isolate the injection, inertial and dissipative ranges, in perfect agreement with the Batchelor model and with a fBM model. In a second stage, we design a conditioning procedure in order to finely probe the asymmetries in the statistics that are responsible for the energy cascade. Our approach is very generic and can be applied to any multiscale complex system.
505 - T. Gubiec , P. Szymczak 2008
A simple model of Laplacian growth is considered, in which the growth takes place only at the tips of long, thin fingers. In a recent paper, Carleson and Makarov used the deterministic Loewner equation to describe the evolution of such a system. We e xtend their approach to a channel geometry and show that the presence of the side walls has a significant influence on the evolution of the fingers and the dynamics of the screening process, in which longer fingers suppress the growth of the shorter ones.
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th e $O(n)$-model in the limit $ntoinfty$. The stationary state of the quantum dynamics is shown to be a non-equilibrium state. The quantum spherical and the quantum $O(n)$-model for $ntoinfty$ are in the same dynamical universality class. The long-time behaviour of single-time and two-time correlation and response functions is analysed and the universal exponents which characterise quantum coarsening and quantum ageing are derived. The importance of the non-Markovian long-time memory of the quantum noise is elucidated by comparing it with an effective Markovian noise having the same scaling behaviour and with the case of non-equilibrium classical dynamics.
We use fluctuating hydrodynamics to analyze the dynamical properties in the non-equilibrium steady state of a diffusive system coupled with reservoirs. We derive the two-time correlations of the density and of the current in the hydrodynamic limit in terms of the diffusivity and the mobility. Within this hydrodynamic framework we discuss a generalization of the fluctuation dissipation relation in a non-equilibrium steady state where the response function is expressed in terms of the two-time correlations. We compare our results to an exact solution of the symmetric exclusion process. This exact solution also allows one to directly verify the fluctuating hydrodynamics equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا