ﻻ يوجد ملخص باللغة العربية
Machine learning has emerged as an attractive alternative to experiments and simulations for predicting material properties. Usually, such an approach relies on specific domain knowledge for feature design: each learning target requires careful selection of features that an expert recognizes as important for the specific task. The major drawback of this approach is that computation of only a few structural features has been implemented so far, and it is difficult to tell a priori which features are important for a particular application. The latter problem has been empirically observed for predictors of guest uptake in nanoporous materials: local and global porosity features become dominant descriptors at low and high pressures, respectively. We investigate a feature representation of materials using tools from topological data analysis. Specifically, we use persistent homology to describe the geometry of nanoporous materials at various scales. We combine our topological descriptor with traditional structural features and investigate the relative importance of each to the prediction tasks. We demonstrate an application of this feature representation by predicting methane adsorption in zeolites, for pressures in the range of 1-200 bar. Our results not only show a considerable improvement compared to the baseline, but they also highlight that topological features capture information complementary to the structural features: this is especially important for the adsorption at low pressure, a task particularly difficult for the traditional features. Furthermore, by investigation of the importance of individual topological features in the adsorption model, we are able to pinpoint the location of the pores that correlate best to adsorption at different pressure, contributing to our atom-level understanding of structure-property relationships.
Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high- effciency thermal energy conversion. Understanding
Magnetic coercivity is often viewed to be lower in alloys with negligible (or zero) values of the anisotropy constant. However, this explains little about the dramatic drop in coercivity in FeNi alloys at a non-zero anisotropy value. Here, we develop
The ground state of $^4$He confined in a system with the topology of a cylinder can display properties of a solid, superfluid and liquid crystal. This phase, which we call compactified supersolid (CSS), originates from wrapping the basal planes of th
Porous carbonaceous materials have many important industrial applications including energy storage, water purification, and adsorption of volatile organic compounds. Most of their applications rely upon the adsorption of molecules or ions within the
Geometric information such as the space groups and crystal systems plays an important role in the properties of crystal materials. Prediction of crystal system and space group thus has wide applications in crystal material property estimation and str