ﻻ يوجد ملخص باللغة العربية
We report on the first NuSTAR observation of the transitional millisecond pulsar binary XSS J12270-4859 during its current rotation-powered state, complemented with a 2.5yr-long radio monitoring at Parkes telescope and archival XMM-Newton and Swift X-ray and optical data. The radio pulsar is mainly detected at 1.4GHz displaying eclipses over about 40% of the 6.91h orbital cycle. We derive a new updated radio ephemeris to study the 3-79keV light curve that displays a significant orbital modulation with fractional amplitude of 28+/-3%, a structured maximum centred at the inferior conjunction of the pulsar and no cycle-to-cycle or low-high-flaring mode variabilities. The average X-ray spectrum, extending up to about 70keV without a spectral break, is well described by a simple power-law with photon index Gamma = 1.17+/-0.08 giving a 3-79keV luminosity of 7.6(-0.8;+3.8)x10**32 erg/s, for a distance of 1.37(-0.15;+0.69)kpc. Energy resolved orbital light curves reveal that the modulation is not energy dependent from 3keV to 25keV and is undetected with an upper limit of about 10% above 25keV. Comparison with previous X-ray XMM-Newton observations in common energy ranges confirms that the modulation amplitudes vary on timescales of a few months, indicative of a non-stationary contribution of the intrabinary shock formed by the colliding winds of the pulsar and the companion. A more detailed inspection of energy resolved modulations than previously reported gives hints of a mild softening at superior conjunction of the pulsar below 3keV, likely due to the contribution of the thermal emission from the neutron star. The intrabinary shock emission, if extending into the MeV range, would be energetically capable alone to irradiate the donor star.
We present the first detection of X-ray coherent pulsations from the transitional millisecond pulsar XSS J12270-4859, while it was in a sub-luminous accretion disk state characterized by a 0.5-10 keV luminosity of 5E33 erg/s (assuming a distance of 1
We present an analysis of X-ray, Ultraviolet and optical/near-IR photometric data of the transitional millisecond pulsar binary XSSJ12270-4859, obtained at different epochs after the transition to a rotation-powered radio pulsar state. The observatio
Millisecond radio pulsars acquire their rapid rotation rates through mass and angular momentum transfer in a low-mass X-ray binary system. Recent studies of PSR J1824-2452I and PSR J1023+0038 have observationally demonstrated this link, and they have
XSS J12270-4859 (henceforth J12270) is the first low-mass X-ray binary to exhibit a transition, taking place at the end of 2012, from an X-ray active state to a radio pulsar state. The X-ray emission based on archival XMM-Newton observations is highl
We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few