ترغب بنشر مسار تعليمي؟ اضغط هنا

Large flux-mediated coupling in hybrid electromechanical system with a transmon qubit

101   0   0.0 ( 0 )
 نشر من قبل Vibhor Singh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Control over the quantum states of a massive oscillator is important for several technological applications and to test the fundamental limits of quantum mechanics. Addition of an internal degree of freedom to the oscillator could be a valuable resource for such control. Recently, hybrid electromechanical systems using superconducting qubits, based on electric-charge mediated coupling, have been quite successful. Here, we realize a hybrid device, consisting of a superconducting transmon qubit and a mechanical resonator coupled using the magnetic-flux. The coupling stems from the quantum-interference of the superconducting phase across the tunnel junctions. We demonstrate a vacuum electromechanical coupling rate up to 4 kHz by making the transmon qubit resonant with the readout cavity. Consequently, thermal-motion of the mechanical resonator is detected by driving the hybridized-mode with mean-occupancy well below one photon. By tuning qubit away from the cavity, electromechanical coupling can be enhanced to 40 kHz. In this limit, a small coherent drive on the mechanical resonator results in the splitting of qubit spectrum, and we observe interference signature arising from the Landau-Zener-Stuckelberg effect. With improvements in qubit coherence, this system offers a novel platform to realize rich interactions and could potentially provide full control over the quantum motional states.



قيم البحث

اقرأ أيضاً

We describe a quantum electromechanical system(QEMS) comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal el ectrodes [Park et al., Nature, 407, 57 (2000)]. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage.
Spin qubits and superconducting qubits are among the promising candidates for a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either world, a coherent long-distance link is neces sary that integrates and couples both qubit types on the same chip. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We find a working point for the spin qubit, where the ratio between its coupling strength and decoherence rate is optimized. We observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.
The coherent control of spin qubits forms the basis of many applications in quantum information processing and nanoscale sensing, imaging and spectroscopy. Such control is conventionally achieved by direct driving of the qubit transition with a reson ant global field, typically at microwave frequencies. Here we introduce an approach that relies on the resonant driving of nearby environment spins, whose localised magnetic field in turn drives the qubit when the environmental spin Rabi frequency matches the qubit resonance. This concept of environmentally mediated resonance (EMR) is explored experimentally using a qubit based on a single nitrogen-vacancy (NV) centre in diamond, with nearby electronic spins serving as the environmental mediators. We demonstrate EMR driven coherent control of the NV spin-state, including the observation of Rabi oscillations, free induction decay, and spin-echo. This technique also provides a way to probe the nanoscale environment of spin qubits, which we illustrate by acquisition of electron spin resonance spectra of single NV centres in various settings.
We uncover a remarkably regular array of singularity-like structures within the deep strong-coupling limit of qubit-oscillator (e.g. light-matter) systems described by the quantum Rabi model, as a function of time and coupling strength. These non-ana lytic anomalies in the Loschmidt amplitude (echoes) suggest the existence of new forms of dynamical phase transition within this deep strong-coupling regime. The key feature whereby the initial state collapses into orthogonal states at select values of the interaction strength and select times, may be used to enhance - or attack - quantum information processing or computation schemes that rely on removing - or retaining - a given quantum state.
We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the s econd probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubits energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا