ﻻ يوجد ملخص باللغة العربية
Air temperature (Ta) is an essential climatological component that controls and influences various earth surface processes. In this study, we make the first attempt to employ deep learning for Ta mapping mainly based on space remote sensing and ground station observations. Considering that Ta varies greatly in space and time and is sensitive to many factors, assimilation data and socioeconomic data are also included for a multi-source data fusion based estimation. Specifically, a 5-layers structured deep belief network (DBN) is employed to better capture the complicated and non-linear relationships between Ta and different predictor variables. Layer-wise pre-training process for essential features extraction and fine-tuning process for weight parameters optimization ensure the robust prediction of Ta spatio-temporal distribution. The DBN model was implemented for 0.01{deg} daily maximum Ta mapping across China. The ten-fold cross-validation results indicate that the DBN model achieves promising results with the RMSE of 1.996{deg}C, MAE of 1.539{deg}C, and R of 0.986 at the national scale. Compared with multiple linear regression (MLR), back-propagation neural network (BPNN) and random forest (RF) method, the DBN model reduces the MAE values by 1.340{deg}C, 0.387{deg}C and 0.222{deg}C, respectively. Further analysis on spatial distribution and temporal tendency of prediction errors both validate the great potentials of DBN in Ta estimation.
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are
Identifying regions that have high likelihood for wildfires is a key component of land and forestry management and disaster preparedness. We create a data set by aggregating nearly a decade of remote-sensing data and historical fire records to predic
In the analysis of empirical signals, detecting correlations that capture genuine interactions between the elements of a complex system is a challenging task with applications across disciplines. Here we analyze a global data set of surface air tempe
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensiti
Global lockdowns in response to the COVID-19 pandemic have led to changes in the anthropogenic activities resulting in perceivable air quality improvements. Although several recent studies have analyzed these changes over different regions of the glo