ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of Potassium Abundances for Giant and Dwarf Stars in the Galactic Disk

248   0   0.0 ( 0 )
 نشر من قبل Yoichi Takeda
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yoichi Takeda




اسأل ChatGPT حول البحث

An extensive study on the potassium abundances of late-type stars was carried out by applying the non-LTE spectrum-fitting analysis to the K I resonance line at 7698.96A to a large sample of 160 FGK dwarfs and 328 late-G /early-K giants (including 89 giants in the Kepler field with seismologically known ages) belonging to the disk population (-1 < [Fe/H] < 0.5), which may provide important observational constraint on the nucleosynthesis history of K in the galactic disk. Special attention was paid to clarifying the observed behaviors of [K/Fe] in terms of [Fe/H] along with stellar age, and to checking whether giants and dwarfs yield consistent results with each other. The following results were obtained. (1) A slightly increasing tendency of [K/Fe] with a decrease in [Fe/H] (d[K/Fe]/d[Fe/H] ~ -0.1 to -0.15; a shallower slope than reported by previous studies) was confirmed for FGK dwarfs, though thick-disk stars tend to show larger [K/Fe] deviating from this gradient. (2) Almost similar characteristics was observed also for apparently bright field giants locating in the solar neighborhood (such as like dwarfs). (3) However, the [K/Fe] vs. [Fe/H] relation for more distant {it Kepler} giants shows larger scatter and is systematically higher (by <~0.1dex) than that of dwarfs, implying that chemical evolution of K is rather diversified depending on the position in the Galaxy. (4) Regarding the age-dependence, a marginal trend of increasing [K/Fe] with age is recognized for dwarfs, while any systematic tendency is not observed for Kepler giants. These consequences may suggest that evolution of [K/Fe] with time in the galactic disk does exist but proceeded more gradually than previously thought, and its condition is appreciably location-dependent.



قيم البحث

اقرأ أيضاً

113 - Yoichi Takeda 2021
Spectroscopic determinations of Rubidium abundances were conducted by applying the spectrum fitting method to the Rb I 7800 line for an extensive sample of ~500 late-type dwarfs as well as giants (including Hyades cluster stars) belonging to the gala ctic disk population, with an aim of establishing the behaviour of [Rb/Fe] ratio for disk stars in the metallicity range of -0.6<[Fe/H]<+0.3. An inspection of the resulting Rb abundances for Hyades dwarfs revealed that they show a systematic Teff-dependent trend at >5500K; this means that the results for mid-G to F stars (including the Sun) are not reliable (i.e., more or less overestimated), which might be due to some imperfect treatment of surface convection in classical model atmospheres. As such, it was decided to confine only to late-G and K stars at Teff<5500K and adopt the solar-system (meteoritic) value as the reference Rb abundance. The [Rb/Fe] vs.[Fe/H] relations derived for field dwarfs and giants turned out to be consistent with each other, showing a gradual increase of [Rb/Fe] with a decrease in [Fe/H] (with d[Rb/Fe]/d[Fe/H] gradient of ~-0.4 around the solar metallicity), which is favourably compared with the theoretical prediction of chemical evolution models. Accordingly, this study could not confirm the anomalous behaviour of [Rb/Fe] ratio (tending to be subsolar but steeply increasing toward supersolar metallicity) recently reported for M dwarf stars of -0.3<[Fe/H]<+0.3.
The chemical evolution of fluorine is investigated in a sample of Milky Way red giantstars that span a significant range in metallicity from [Fe/H] $sim$ -1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-res olution infraredspectra near $lambda$ 2.335 $mu$m. The red giants are members of the thin and thick disk / halo,with two stars being likely members of the outer disk Monoceros overdensity. At lowermetallicities, with [Fe/H]<-0.4 to -0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] $sim$ -0.3 to -0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] anddisplays a near-secondary behavior with respect to Fe. Comparisons with various models of chemical evolution suggest that in the low-metallicity regime (dominated hereby thick disk stars), a primary evolution of $^{19}$F with Fe, with a subsolar [F/Fe] valuethat roughly matches the observed plateau can be reproduced by a model incorporatingneutrino nucleosynthesis in the aftermath of the core collapse in supernovae of type II (SN II). A primary behavior for [F/Fe] at low metallicity is also observed for a model including rapid rotating low-metallicity massive stars but this overproduces [F/Fe] atlow metallicity. The thick disk red giants in our sample span a large range of galactocentric distance (Rg $sim$ 6--13.7 kpc), yet display a $sim$constant value of [F/Fe], indicating a very flat gradient (with a slope of 0.02 $pm$ 0.03 dex/kpc) of this elemental ratio over asignificant portion of the Galaxy having|Z|>300 pc away from the Galaxy mid-plane.
The vast majority of Milky Way stellar halo stars were likely accreted from a small number ($lesssim$3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained, relying predominantly on indirect dy namical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be associated with the stellar halo, a subset of which are associated with the Gaia-Enceladus-Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined by this work, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia-Enceladus-Sausage stars in our sample of 8 $pm$ 3 (stat.) $pm$ 1 (sys.) Gyr. We also determine hierarchical ages for the populations of Gaia-Enceladus-Sausage, in situ halo and disk stars, finding a Gaia-Enceladus-Sausage population age of 8.0$^{+3.2}_{-2.3}$ Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future.
We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link t he photospheric abundances to the dust species found in the winds of the stars. Here we present a progress report of the analysis of the spectra.
80 - X. D. Xu , J. R. Shi , H. L Yan 2019
Based on the medium-high resolution (R~ 20,000), modest signal-to-noise ratio (S/N > 70) FLAMES-GIRAFFE spectra, we investigated the copper abundances of 129 red giant branch stars in the Galactic bulge with [Fe/H] from -1.14 to 0.46 dex. The copper abundances are derived from both local thermodynamic equilibrium (LTE) and nonlocal thermodynamic equilibrium (NLTE) with the spectral synthesis method. We find that the NLTE effects for Cu I lines show a clear dependence on metallicity, and they gradually increase with decreasing [Fe/H] for our sample stars. Our results indicate that the NLTE effects of copper are important not only for metal-poor stars but also for supersolar metal-rich ones and the LTE results underestimate the Cu abundances. We note that the [Cu/Fe] trend of the bulge stars is similar to that of the Galactic disk stars spanning the metallicity range of -1.14 < [Fe/H] < 0.0 dex and the [Cu/Fe] ratios increase with increasing metallicity when [Fe/H] is from~-1.2 to~-0.5 dex, favoring a secondary (metallicity-dependent) production of Cu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا